Bi2O2Se Nanosheets for Efficient Piezocatalytic H2O2 Production
Abstract
1. Introduction
2. Results and Discussions
2.1. Morphology and Crystal Structure
2.2. Piezocatalytic Activity Performance
2.3. Mechanism Analysis
3. Experimental Section
3.1. Synthesis of Bi2O2Se NSs
3.2. Material Characterization
3.3. Piezocatalytic Activity Tests
3.4. Piezo-Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development. ChemSusChem 2016, 9, 3374–3381. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; de León, C.P.; Walsh, F.C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458. [Google Scholar] [CrossRef]
- Dowling, J.A.; Rinaldi, K.Z.; Ruggles, T.H.; Davis, S.J.; Yuan, M.; Tong, F.; Lewis, N.S.; Caldeira, K. Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems. Joule 2020, 4, 1907–1928. [Google Scholar] [CrossRef]
- Esan, O.C.; Shi, X.; Pan, Z.; Liu, Y.; Huo, X.; An, L.; Zhao, T.S. A high-performance H2O2-based fuel cell for air-free applications. J. Power Sources 2022, 548, 232114. [Google Scholar] [CrossRef]
- Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J.L.G. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. [Google Scholar] [CrossRef]
- Fink, A.G.; Delima, R.S.; Rousseau, A.R.; Hunt, C.; LeSage, N.E.; Huang, A.; Stolar, M.; Berlinguette, C.P. Indirect H2O2 synthesis without H2. Nat. Commun. 2024, 15, 766. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, C.; Bian, G.; Xu, J.; Dong, Y.; Zhang, Y.; Lou, Y.; Liu, W.; Zhu, Y. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361–371. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Yu, H.; Položij, M.; Guo, Y.; Sum, T.C.; Heine, T.; Jiang, D. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195–206. [Google Scholar] [CrossRef]
- Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384. [Google Scholar] [CrossRef]
- Tan, H.; Zhou, P.; Liu, M.; Zhang, Q.; Liu, F.; Guo, H.; Zhou, Y.; Chen, Y.; Zeng, L.; Gu, L.; et al. Photocatalysis of water into hydrogen peroxide over an atomic Ga-N5 site. Nat. Synth. 2023, 2, 557–563. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Lv, W.; Ge, X.; Huang, X.; Hu, Q.; Song, K.; Liu, Q.; Xie, H.; Wu, B.; Yuan, J. Electron-Deficient Engineering in Large-Conjugate-Heptazine Framework to Effectively Shuttle Hot Electrons for Efficient Photocatalytic H2O2 Production. Adv. Funct. Mater. 2025, 35, 2414193. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Sang, Z.; Tan, H.; Ye, N.; Sun, C.; Sun, Z.; Luo, M.; Guo, S. Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution. Nat. Synth. 2025, 4, 134–141. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162. [Google Scholar] [CrossRef]
- Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231. [Google Scholar] [CrossRef]
- Jung, E.; Shin, H.; Lee, B.-H.; Efremov, V.; Lee, S.; Lee, H.S.; Kim, J.; Antink, W.H.; Park, S.; Lee, K.-S.; et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442. [Google Scholar] [CrossRef]
- Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E.A.; Frydendal, R.; Hansen, T.W.; et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143. [Google Scholar] [CrossRef]
- Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Adv. Energy Mater. 2018, 8, 1801909. [Google Scholar] [CrossRef]
- Sun, X.; Yang, J.; Zeng, X.; Guo, L.; Bie, C.; Wang, Z.; Sun, K.; Sahu, A.K.; Tebyetekerwa, M.; Rufford, T.E.; et al. Pairing Oxygen Reduction and Water Oxidation for Dual−pathway H2O2 Production. Angew. Chem. Int. Ed. 2024, 63, e202414417. [Google Scholar] [CrossRef]
- Sun, P.; Mo, Z.; Zhang, J.; Wu, G.; Miao, Z.; Zhong, K.; Wei, Y.; Jia, C.; Chen, Z.; Xu, H. Cyano-rich carbon nitride with tunable n → π* electronic transition for enhanced broad-spectrum photocatalytic H2O2 production. Chem. Eng. J. 2023, 478, 147337. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, L.; Yu, X.; Sun, L.; Li, J.; Yang, J.; Liu, Q. Precise regulation of built-in electric field over NH2-MIL-125-Ti/WO3-x S-scheme heterojunction for achieving simultaneous formation of CO and H2O2 from CO2 and H2O. Chem. Eng. J. 2023, 466, 143129. [Google Scholar] [CrossRef]
- Zhou, C.; Song, Y.; Wang, Z.; Liu, J.; Sun, P.; Mo, Z.; Yi, J.; Zhai, L. Cyano-rich porous carbon nitride nanosheets for enhanced photocatalytic H2O2 production. J. Environ. Chem. Eng. 2023, 11, 110138. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Sun, L.; Jiang, H.; Liu, Y.; Liu, Q.; She, X.; Tang, H. Se–Se bonds induced highly metallic 1T’ MoSe2.3 nanosheets cocatalysts towards boosted H2O2 photosynthesis over NH2-MIL-125 derived TiO2 nanotablets. Chem. Eng. J. 2023, 477, 146945. [Google Scholar] [CrossRef]
- Deng, D.; Wang, J.; Wang, M.; Wang, Y.; Jiang, J.; Chen, Y.; Bai, Y.; Wu, Q.; Lei, Y. Accelerated O2 adsorption and stabilized *OOH for electrocatalytic H2O2 production. J. Mater. Sci. Technol. 2025, 227, 76–81. [Google Scholar] [CrossRef]
- Mahapatra, S.D.; Mohapatra, P.C.; Aria, A.I.; Christie, G.; Mishra, Y.K.; Hofmann, S.; Thakur, V.K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 8, 2100864. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, J.; Lee, C.; Lee, S.-W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef]
- Xue, X.; Zang, W.; Deng, P.; Wang, Q.; Xing, L.; Zhang, Y.; Wang, Z.L. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 2015, 13, 414–422. [Google Scholar] [CrossRef]
- Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water. J. Phys. Chem. Lett. 2010, 1, 997–1002. [Google Scholar] [CrossRef]
- Starr, M.B.; Shi, J.; Wang, X. Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials. Angew. Chem. Int. Ed. 2012, 51, 5962–5966. [Google Scholar] [CrossRef]
- Tan, C.F.; Ong, W.L.; Ho, G.W. Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities. ACS Nano 2015, 9, 7661–7670. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. Recent Advances of Ferro-, Piezo-, and Pyroelectric Nanomaterials for Catalytic Applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079. [Google Scholar] [CrossRef]
- Starr, M.B.; Wang, X. Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials. Sci. Rep. 2013, 3, 2160. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sang, Y.; Chang, S.; Huang, X.; Zhang, Y.; Yang, R.; Jiang, H.; Liu, H.; Wang, Z.L. Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect. Nano Lett. 2015, 15, 2372–2379. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, M.; Liu, X.; Huang, W.; Sun, S.; Jiang, Y.; Liu, Y.; Zhang, J.; Zhang, Z. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy 2022, 95, 107031. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, Y.; Ye, J.; Zhou, X.; Zhou, X.; Zhao, Y.; Feng, K.; Luo, H.; Zhang, D.; Bowen, C. Retrievable Hierarchically Porous Ferroelectric Ceramics for “Greening” the Piezo-Catalysis Process. Adv. Funct. Mater. 2024, 34, 2311091. [Google Scholar] [CrossRef]
- Zhang, Y.; Khanbareh, H.; Dunn, S.; Bowen, C.R.; Gong, H.; Duy, N.P.H.; Phuong, P.T.T. High Efficiency Water Splitting using Ultrasound Coupled to a BaTiO3 Nanofluid. Adv. Sci. 2022, 9, 2105248. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Xu, J.; Tang, W.; Wang, Z.L.; Fan, F.R. Contact-electro-catalysis for Direct Synthesis of H2O2 under Ambient Conditions. Angew. Chem. Int. Ed. 2023, 62, e202300604. [Google Scholar] [CrossRef]
- Ran, M.; Du, B.; Liu, W.; Liang, Z.; Liang, L.; Zhang, Y.; Zeng, L.; Xing, M. Dynamic defects boost in-situ H2O2 piezocatalysis for water cleanup. Proc. Natl. Acad. Sci. USA 2024, 121, e2317435121. [Google Scholar] [CrossRef]
- Jin, C.-C.; Liu, D.-M.; Zhang, L.-X. An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials. Small 2023, 19, 2303586. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, L.; Wang, W.; Li, X.; Zhang, Y.; Shao, D. Enhanced H2 evolution based on ultrasound-assisted piezo-catalysis of modified MoS2. J. Mater. Chem. A 2018, 6, 11909–11915. [Google Scholar] [CrossRef]
- Wu, J.M.; Sun, Y.-G.; Chang, W.-E.; Lee, J.-T. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy 2018, 46, 372–382. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, G.; Wang, Y.; Yang, X.; Wei, T.; Wang, Q.; Liang, J.; Xu, N.; Li, Z.; Zhu, B.; et al. Seed-Induced Vertical Growth of 2D Bi2O2Se Nanoplates by Chemical Vapor Transport. Adv. Funct. Mater. 2019, 29, 1906639. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Ye, S.; Song, J.; Qu, J. Progress Report on Property, Preparation, and Application of Bi2O2Se. Adv. Funct. Mater. 2020, 30, 2004480. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, X.; Zhao, S.; Lin, X.; Li, W. Giant Modulation of the Electron Mobility in Semiconductor Bi2O2Se via Incipient Ferroelectric Phase Transition. J. Am. Chem. Soc. 2022, 144, 4541–4549. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Y.; Zhang, Y.; Zhang, Z.; Wang, W.; Lai, Z.; Xie, P.; Li, D.; Chen, D.; Quan, Q.; et al. Electrically Switchable Polarization in Bi2O2Se Ferroelectric Semiconductors. Adv. Mater. 2023, 35, 2210854. [Google Scholar] [CrossRef]
- Ghosh, T.; Samanta, M.; Vasdev, A.; Dolui, K.; Ghatak, J.; Das, T.; Sheet, G.; Biswas, K. Ultrathin Free-Standing Nanosheets of Bi2O2Se: Room Temperature Ferroelectricity in Self-Assembled Charged Layered Heterostructure. Nano Lett. 2019, 19, 5703–5709. [Google Scholar] [CrossRef]
- Li, M.-Q.; Dang, L.-Y.; Wang, G.-G.; Li, F.; Han, M.; Wu, Z.-P.; Li, G.-Z.; Liu, Z.; Han, J.-C. Bismuth Oxychalcogenide Nanosheet: Facile Synthesis, Characterization, and Photodetector Application. Adv. Mater. Technol. 2020, 5, 2000180. [Google Scholar] [CrossRef]
- Jing, L.; Xu, Y.; Xie, M.; Li, Z.; Wu, C.; Zhao, H.; Wang, J.; Wang, H.; Yan, Y.; Zhong, N.; et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy 2023, 112, 108508. [Google Scholar] [CrossRef]
- Fu, M.; Luo, J.; Shi, B.; Tu, S.; Wang, Z.; Yu, C.; Ma, Z.; Chen, X.; Li, X. Promoting Piezocatalytic H2O2 Production in Pure Water by Loading Metal-Organic Cage-Modified Gold Nanoparticles on Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2024, 63, e202316346. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, L.; Xiang, D.; Guo, Z.; Wang, C.; Song, Q. Facile and enlargeable preparation of piezocatalytic CaCO3 for efficient degradation of organic dyes. Enviromental Res. 2025, 267, 120649. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Shan, T.; Deng, L.; Li, M.; Pan, X.; Yang, X.; Zhao, X.; Yang, M.-Q. Facile synthesis of hierarchical CdS nanoflowers for efficient piezocatalytic hydrogen evolution. Dalton Trans. 2023, 52, 13426–13434. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tian, N.; An, Y.; Sun, R.; Zhang, Y.; Huang, H. Morphology Regulation and Oxygen Vacancy Construction Synergistically Boosting the Piezocatalytic Degradation and Pure Water Splitting of SrTiO3. Small 2024, 20, 2407624. [Google Scholar] [CrossRef] [PubMed]
- Tomita, O.; Otsubo, T.; Higashi, M.; Ohtani, B.; Abe, R.J.A.C. Partial oxidation of alcohols on visible-light-responsive WO3 photocatalysts loaded with palladium oxide cocatalyst. ACS Catal. 2016, 6, 1134–1144. [Google Scholar] [CrossRef]
Catalysts | Catalytic Conditions | H2O2 Production Rate (μmol/g/h) | Ref |
---|---|---|---|
g-C3N4 | ultrasonic vibration 45 kHz, 150 W | 262 | [49] |
MOC-AuNP/g-C3N4 | ultrasonic vibration 300 W | 120.21 | [50] |
porous CaCO3 | ultrasonic vibration 40 kHz, 210 W | 331 | [51] |
CdS | ultrasonic vibration 40 kHz | 1460 | [52] |
SrTiO3 nanorods | ultrasonic vibration 40 kHz, 200 W | 540 | [53] |
Bi2O2Se NSs | ultrasonic vibration 45 kHz, 100 W | 1033.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, X.; Zhang, X.; Liu, Y. Bi2O2Se Nanosheets for Efficient Piezocatalytic H2O2 Production. Catalysts 2025, 15, 157. https://doi.org/10.3390/catal15020157
Li S, Liu X, Zhang X, Liu Y. Bi2O2Se Nanosheets for Efficient Piezocatalytic H2O2 Production. Catalysts. 2025; 15(2):157. https://doi.org/10.3390/catal15020157
Chicago/Turabian StyleLi, Shun, Xinbo Liu, Xinyue Zhang, and Yong Liu. 2025. "Bi2O2Se Nanosheets for Efficient Piezocatalytic H2O2 Production" Catalysts 15, no. 2: 157. https://doi.org/10.3390/catal15020157
APA StyleLi, S., Liu, X., Zhang, X., & Liu, Y. (2025). Bi2O2Se Nanosheets for Efficient Piezocatalytic H2O2 Production. Catalysts, 15(2), 157. https://doi.org/10.3390/catal15020157