Recent Progress in g-C3N4-Based Photocatalysts for Organic Pollutant Degradation: Strategies to Improve Photocatalytic Activity
Abstract
:1. Introduction
2. Strategies to Improve Photocatalytic Activity
2.1. Morphology Control
2.2. Doping
2.3. Functionalization
2.4. Metal Deposition
2.5. Dye Sensitization
2.6. Defect Engineering
2.7. Construction of Heterojunctions
2.7.1. Type-II Heterojunction
2.7.2. Z-Scheme Heterojunction
2.7.3. S-Scheme Heterojunction
2.7.4. p-n Heterojunction
3. Oxidant Coupling Strategy to Enhance the Photocatalytic Degradation Efficiency of Organic Pollutants
4. Conclusions and Perspectives
- While many strategies have demonstrated significant performance enhancement in laboratory-scale experiments, ensuring long-term stability of the photocatalysts under harsh industrial conditions remains a pressing issue. Photocatalysts often degrade or lose efficiency with prolonged use, especially when exposed to complex wastewater matrices containing various inorganic and organic components. Additionally, the mineralization rates of organic pollutants are often insufficient, requiring further optimization of the photocatalysts’ oxidizing capability.
- The synergistic or antagonistic effects of combining multiple catalyst design strategies remain poorly understood. In-depth understanding of the inter-relationship between these strategies is essential for designing more efficient and cost-effective photocatalysts.
- Precise control over the structure of g-C3N4 during the synthesis process poses a significant challenge. Some of the aforementioned strategies, such as morphology control and construction of heterojunctions, require precise regulation of the surface structure to optimize photocatalytic performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bisaria, K.; Sinha, S.; Singh, R.; Iqbal, H.M.N. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation-A comprehensive review. Chemosphere 2021, 284, 131263. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.K.; Badru, R.; Singh, P.P.; Kaushal, S. Photodegradation of organic pollutants using heterojunctions: A review. J. Environ. Chem. Eng. 2020, 8, 103666. [Google Scholar]
- Li, Z.; Zheng, T.; Li, M.; Liu, X. Organic contaminants in the effluent of Chinese wastewater treatment plants. Environ. Sci. Pollut. Res. 2018, 25, 26852–26860. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Kong, L.; Zhong, Y.; Diao, Z.; Shih, K.; Hou, L.A.; Wang, S.; Chen, D. Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater. J. Clean Prod. 2021, 321, 128924. [Google Scholar] [CrossRef]
- Shanmugavel, S.P.; Kumar, G.; Yogalakshmi, K.N.; Gunasekaran, M.; Banu, J.R. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. Environ. Pollut. 2024, 341, 122842. [Google Scholar]
- Huang, S.; Tian, F.; Dai, J.; Tian, X.; Li, G.; Liu, Y.; Chen, Z.; Chen, R. Highly efficient degradation of chlorophenol over bismuth oxides upon near-infrared irradiation: Unraveling the effect of Bi-O-Bi-O defects cluster and 1O2 involved process. Appl. Catal. B-Environ. 2021, 298, 120576. [Google Scholar] [CrossRef]
- Zhong, Y.; Shih, K.; Diao, Z.; Song, G.; Su, M.; Hou, L.A.; Chen, D.; Kong, L. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chem. Eng. J. 2021, 417, 129225. [Google Scholar] [CrossRef]
- Tan, W.; Ruan, Y.; Diao, Z.; Song, G.; Su, M.; Hou, L.A.; Chen, D.; Kong, L.; Deng, H. Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber. Chemosphere 2021, 280, 130626. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Tan, L.-L.; Ng, Y.H.; Yong, S.; Chai, S. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Guo, R.; Wang, J.; Bi, Z.; Chen, X.; Hu, X.; Pan, W. Recent advances and perspectives of g-C3N4-based materials for photocatalytic dyes degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, G.; Qin, L.; Liu, J.; Li, B.; Hu, Y.; Cheng, H. Z-scheme g-C3N4-AQ-MoO3 photocatalyst with unique electron transfer channel and large reduction area for enhanced sunlight photocatalytic hydrogen production. Appl. Catal. B-Environ. Energy 2021, 288, 120025. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, H. Self-introduction of carbon nitride quantum dots into carbon nitride planar structure for enhanced photocatalytic hydrogen production. Appl. Catal. B-Environ. 2023, 339, 123101. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Raaja Rajeshwari, M.; Okla, M.K.; Kokilavani, S.; Abdel-Maksoud, M.A.; Saleh, I.A.; Abu-Harirah, H.A.; AlRamadneh, T.N.; Khan, S.S. Synergistic visible light assisted photocatalytic degradation of p-chlorophenol and rifampicin from aqueous solution using a novel g-C3N4 quantum dots incorporated alpha-MoO3 nanohybrid—Mechanism, pathway and toxicity studies. Chemosphere 2023, 339, 139529. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Wang, X.; Cai, Y.; Jia, R.; Wang, W.; Xia, S.; Li, L.; Chen, Z.; Jin, C.-C. One-step preparation of Z-scheme g-C3N4 nanorods/TiO2 microsphere with improved photodegradation of antibiotic residue. Ceram. Int. 2024, 50, 42127–42134. [Google Scholar] [CrossRef]
- Cui, D.; Yang, X.; Liu, Y.; Ou, T.; Kong, X.; Zhang, Y.; Zhang, J.; Li, F. Strategy of constructing D-A structure and accurate active sites over graphitic carbon nitride nanowires for high efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2025, 678, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Shan, R.; Gu, J.; Wang, S.; Cheng, L.; Yuan, H.; Chen, Y. Unraveling the impact of three coordinate nitrogen (N3c) vacancies in porous carbon nitride nanobelt for boosted photocatalytic degradation of microplastics and antibiotics. Appl. Catal. B-Environ. 2024, 358, 124402. [Google Scholar] [CrossRef]
- Dai, J.; Liu, Z.; Song, Y.; Liu, Y.; Nghiem, L.D.; Wang, Q.; Liu, W.; Sun, X.; Cai, Z. Heterocyclic polymerization modified g-C3N4 nanotube with advanced charge separation for solar light driven degradation of ciprofloxacin. Sep. Purif. Technol. 2024, 348, 127692. [Google Scholar] [CrossRef]
- Altendji, K.; Hamoudi, S. Efficient Photocatalytic Degradation of Aqueous Atrazine over Graphene-Promoted g-C3N4 Nanosheets. Catalysts 2023, 13, 1265. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, J.; Wang, A.; Kannan, P.; Jing, S.; Chen, F.; Tsiakaras, P. Synthesis of novel nanoflowers-like P, K co-doped graphitic carbon nitride for efficient H2O2 photoproduction. J. Colloid Interface Sci. 2025, 677, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Tai, Z.; Zhang, J.; Cheng, B.; Yu, H.; Yu, J. Bifunctional g-C3N4 nanospheres/CdZnS QDs S-scheme photocatalyst with boosted H2 evolution and furfural synthesis mechanism. Appl. Catal. B-Environ. 2024, 358, 124459. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, B.; Zhang, H.; Huang, T.; Wang, Y.; Huang, W.; Hu, W.; Pan, A.; Fan, X.; Huang, G. A host-guest self-assembly strategy to enhance π-electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution. Chem. Eng. J. 2022, 430, 132880. [Google Scholar] [CrossRef]
- Xiao, S.; Yin, R.; Wu, L.; Wu, S.; Tian, G.; Shalom, M.; Wang, L.; Wang, Y.; Pu, F.; Barad, H.; et al. Hierarchically Porous Few-Layer Carbon Nitride and Its High H plus Selectivity for Efficient Photocatalytic Seawater Splitting. Nano Lett. 2023, 23, 4390–4398. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, B.; Sun, H.; Wang, S.; Duan, X. Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. J. Environ. Chem. Eng. 2022, 10, 107438. [Google Scholar] [CrossRef]
- Wang, A.; Guo, S.; Zheng, Z.; Wang, H.; Song, X.; Zhu, H.; Zeng, Y.; Lam, J.; Qiu, R.; Yan, K. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix. J. Hazard. Mater. 2022, 434, 128905. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Huang, H.; Du, X.; Dong, F.; Zhang, Y. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 2019, 7, 11584–11612. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Yu, P.; Yu, Y.; Fan, X.; Zhang, J.; Yu, Y.; Zheng, H.; Sun, Y. Photocatalytic O2 activation by metal-free carbon nitride nanotube for rapid reactive species generation and organic contaminants degradation. J. Hazard. Mater. 2023, 456, 131715. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Maigbay, M.A.; Li, M.; Qiu, X. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv. Powder Mater. 2024, 3, 100150. [Google Scholar] [CrossRef]
- Panneri, S.; Ganguly, P.; Mohan, M.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.S. Photoregenerable, Bifunctional Granules of Carbon-Doped g-C3N4 as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic. ACS Sustain. Chem. Eng. 2017, 5, 1610–1618. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.; Feng, S.; Jia, Y.; Guo, S.; Wu, X.; Chen, M.; Shi, W. Pt Atoms/Clusters on Ni-phytate-sensitized Carbon Nitride for Enhanced NIR-light-driven Overall Water Splitting beyond 800 nm. Angew. Chem.-Int. Edit. 2022, 61, e202212234. [Google Scholar] [CrossRef]
- Kuate, L.J.N.; Chen, Z.; Lu, J.; Wen, H.; Guo, F.; Shi, W. Photothermal-Assisted Photocatalytic Degradation of Tetracycline in Seawater Based on the Black g-C3N4 Nanosheets with Cyano Group Defects. Catalysts 2023, 13, 1147. [Google Scholar] [CrossRef]
- Nguyen, T.; Sherpa, K.; Chen, C.; Chen, L.; Thao Ho, P.N.; Dong, C. Enhancing photocatalytic reduction of Cr(VI) in water through morphological manipulation of g-C3N4 photocatalysts: A comparative study of 1D, 2D, and 3D structures. Chemosphere 2024, 362, 142787. [Google Scholar] [CrossRef]
- Gnanaguru, M.V.L.; Dey, D.; Ghangrekar, M.M.; Sen, R.; Chowdhury, S. 3D g-C3N4/WS2/Agarose Aerogel Photocatalyst for Near-Complete Degradation of Broad-Spectrum Antibiotics in Batch and Continuous Flow Modes. ACS EST Eng. 2024. [Google Scholar] [CrossRef]
- Tian, N.; Xiao, K.; Zhang, Y.; Lu, X.; Ye, L.; Gao, P.; Ma, T.; Huang, H. Reactive sites rich porous tubular yolk-shell g-C3N4 via precursor recrystallization mediated microstructure engineering for photoreduction. Appl. Catal. B-Environ. 2019, 253, 196–205. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, H. Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications. Chem. Eng. J. 2023, 453, 139755. [Google Scholar] [CrossRef]
- Bhagat, B.R.; Dashora, A. Understanding the synergistic effect of Co-loading and B-doping in g-C3N4 for enhanced photocatalytic activity for overall solar water splitting. Carbon 2021, 178, 666–677. [Google Scholar] [CrossRef]
- Lu, W.; Wang, A.; Zhang, Y.; Ren, S.; Zhang, Z. Insights into enhanced degradation of antibiotic trimethoprim in water using a novel K doped g-C3N4 photocatalyst under vacuum-UV irradiation: Performance and mechanisms. Chem. Eng. J. 2024, 495, 153192. [Google Scholar] [CrossRef]
- Zhou, Z.; Zeng, H.; Li, L.; Tang, R.; Feng, C.; Gong, D.; Huang, Y.; Deng, Y. Methyl contributes to the directed phosphorus doping of g-C3N4: pH-dependent selective reactive oxygen species enable customized degradation of organic pollutants. Water Res. 2024, 255, 121521. [Google Scholar] [CrossRef]
- Bai, Y.; Hu, X.; Tian, T.; Cai, B.; Li, Y. Carbon pre-protected iron strategy to construct Fe, C-codoped g-C3N4 for effective photodegradation of organic pollutants via hole oxidation mechanism. J. Clean Prod. 2024, 437, 140739. [Google Scholar] [CrossRef]
- Niu, B.; Xiao, J.; Xu, Z. Recycling Spent LiCoO2 Battery as a High-efficient Lithium-doped Graphitic Carbon Nitride/Co3O4 Composite Photocatalyst and Its Synergistic Photocatalytic Mechanism. Energy Environ. Mater. 2023, 6, e12312. [Google Scholar] [CrossRef]
- Liu, Z.; Ruan, Z.; Yang, X.; Huang, Y.; Xing, J. Enhancing Performance of Organic Pollutant Degradation via Building Heterojunctions with ZnO Nanowires and Na Doped Conjugated 2,4,6-Triaminopyrimidin-g-C3N4. Molecules 2024, 29, 3240. [Google Scholar] [CrossRef]
- Yan, W.; Yan, L.; Jing, C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Appl. Catal. B-Environ. 2019, 244, 475–485. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Jeong, Y.J.; Cho, I.S.; Park, S.-J.; Lee, C.-G.; Alvarez, P.J.J. Facile synthesis of N vacancy g-C3N4 using Mg-induced defect on the amine groups for enhanced photocatalytic •OH generation. J. Hazard. Mater. 2023, 449, 131046. [Google Scholar] [CrossRef]
- Nguyen Van, M.; Mai, O.L.; Pham Do, C.; Lam Thi, H.; Pham Manh, C.; Nguyen Manh, H.; Pham Thi, D.; Do Danh, B. Fe-Doped g-C3N4: High-Performance Photocatalysts in Rhodamine B Decomposition. Polymers 2020, 12, 1963. [Google Scholar] [CrossRef]
- Yang, X.; Tian, Z.; Chen, Y.; Huang, H.; Hu, J.; Wen, B. In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer. J. Alloys Compd. 2021, 859, 157754. [Google Scholar] [CrossRef]
- Nguyen, O.T.K.; Nguyen, V.H.; Nong, L.X.; Doan, Q.-M.T.; Hoang, L.-A.T.; Nam, K.H.; Lee, T.; Nguyen, T.D. Transition metal nickel nanoparticle-decorated g-C3N4 photocatalyst for improving tetracycline hydrochloride degradation. J. Photochem. Photobiol. A-Chem. 2025, 459, 116042. [Google Scholar] [CrossRef]
- Lv, Z.; Feng, J.; Zhao, R.; Shen, J.; Yang, W. Visible-light-driven photocatalytic degradation of ibuprofen by Cu-doped tubular C3N4: Mechanisms, degradation pathway and DFT calculation. Chemosphere 2024, 358, 142106. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Li, D.; Zhang, C.; Han, W.; Xue, Y.; Zhang, W.; Sun, H.; Wang, S.; Duan, X. Synergistic silver doping and N vacancy promoting photocatalytic performances of carbon nitride for pollutant oxidation and hydrogen production. Chem. Eng. J. 2024, 479, 147676. [Google Scholar] [CrossRef]
- Jing, M.; Zhao, H.; Jian, L.; Pan, C.; Dong, Y.; Zhu, Y. Coral-like B-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. J. Hazard. Mater. 2023, 449, 131017. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Hu, C.; Li, X.; Zhang, P.; Chen, Z. Porous carbon-doped g-C3N4 with tunable band structure for boosting photocatalytic H2O2 production with simultaneous pollutants removal. J. Environ. Chem. Eng. 2022, 10, 107116. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B-Environ. 2018, 224, 1–9. [Google Scholar] [CrossRef]
- Xing, J.; Huang, X.; Yong, X.; Li, X.; Li, J.; Wang, J.; Wang, N.; Hao, H. N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation. Chem. Eng. J. 2023, 455, 140570. [Google Scholar] [CrossRef]
- Zheng, A.; Xie, S.; Li, K.; Zhang, C.; Shi, H. Performance and mechanism investigation on the enhanced photocatalytic removal of atrazine on S-doped g-C3N4. Chemosphere 2024, 347, 140663. [Google Scholar] [CrossRef]
- Bi, L.; Fu, G.; Cai, D.; Shen, J.; Zhang, J.; Kang, J.; Cheng, Y.; Yan, P.; Zhou, Y.; Chen, Z. Electron rich P doped g-C3N4 for photodegradation of 2,4-dichlorophenoxyacetic acid under visible light by improving oxygen adsorption: Performance and catalytic mechanism. Sep. Purif. Technol. 2023, 306, 122562. [Google Scholar] [CrossRef]
- Phoon, B.L.; Yang, T.C.K.; Leo, B.F.; Lai, C.W.; Phang, S.W.; Juan, J.C. Mesoporous semi-ionic F-doped g-C3N4 as efficient photocatalyst for tetracycline removal under visible light. Environ. Technol. Innov. 2023, 32, 103303. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.; Ren, H.; Huang, X.; Shu, K.; Shi, W.; Lu, C. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep. Purif. Technol. 2019, 228, 115770. [Google Scholar] [CrossRef]
- Hong, J.; Hwang, D.K.; Selvaraj, R.; Kim, Y. Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. J. Ind. Eng. Chem. 2019, 79, 473–481. [Google Scholar] [CrossRef]
- Phoon, B.L.; Lai, C.W.; Chen, C.; Boonyuen, S.; Tang, W.K.; Juan, J.C. Mesoporous I-doped-g-C3N4 with C vacancies as superior visible-light-driven photocatalyst for removal of tetracycline antibiotic. J. Alloys Compd. 2024, 1009, 176772. [Google Scholar] [CrossRef]
- Duan, Y.; Li, J.; Jia, D.; Yao, H.; Shang, X.; Li, C. One-step synthesis of Mg-doped g-C3N4 nanosheets for efficient photo-Fenton-like catalysis. Diamond Relat. Mater. 2022, 129, 109313. [Google Scholar] [CrossRef]
- Mao, H.; Wang, L.; Zhang, Q.; Chen, F.; Song, Y.; Gui, H.; Cui, A.; Yao, C. Synergetic Adsorption-Photocatalytic Activated Fenton System via Iron-Doped g-C3N4/GO Hybrid for Complex Wastewater. Catalysts 2023, 13, 88. [Google Scholar] [CrossRef]
- Xie, M.; Tang, J.; Kong, L.; Lu, W.; Natarajan, V.; Zhu, F.; Zhan, J. Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chem. Eng. J. 2019, 360, 1213–1222. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Xie, C.; Yang, P. N-doped carbon nanotubes enhanced charge transport between Ni nanoparticles and g-C3N4 nanosheets for photocatalytic H2 generation and 4-nitrophenol removal. Carbon 2023, 210, 118052. [Google Scholar] [CrossRef]
- Bao, J.; Bai, W.; Wu, M.; Gong, W.; Yu, Y.; Zheng, K.; Liu, L. Template-mediated copper doped porous g-C3N4 for efficient photodegradation of antibiotic contaminants. Chemosphere 2022, 293, 133607. [Google Scholar] [CrossRef]
- Ma, S.; Zhan, S.; Jia, Y.; Shi, Q.; Zhou, Q. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B-Environ. 2016, 186, 77–87. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Z.; Tan, J.; Li, J.; Wu, J.; Zhang, T.; Wang, X. Oxygen-doped porous graphitic carbon nitride in photocatalytic peroxymonosulfate activation for enhanced carbamazepine removal: Performance, influence factors and mechanisms. Chem. Eng. J. 2022, 429, 130860. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Zhou, L.; Liu, C.; Wang, S.; Kang, X. At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production. Appl. Catal. B-Environ. Energy 2025, 361, 124599. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, X.; Gu, L.; Yu, H.; Wu, F.; Liu, Y.; Liu, X.; Gao, Y.; Zhang, H. Embedded iron and nitrogen co-doped carbon quantum dots within g-C3N4 as an exceptional PMS photocatalytic activator for sulfamethoxazole degradation: The key role of Fe-N bridge. Sep. Purif. Technol. 2024, 342, 126975. [Google Scholar] [CrossRef]
- Deng, X.; Yang, H.; Zhao, D.; Guan, J.; Gu, Z.; Zhang, L. Mn-Cu co-doped graphitic carbon nitride accelerates permonosulfate to generate more singlet oxygen in pollutant degradation. J. Water Process. Eng. 2024, 64, 105755. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, L.; Liao, Y.; Xiang, Q. Effect of Functional Group Modifications on the Photocatalytic Performance of g-C3N4. Small 2023, 19, 2300109. [Google Scholar] [CrossRef]
- Zhou, C.; Almatrafi, E.; Tang, X.; Shao, B.; Xia, W.; Song, B.; Xiong, W.; Wang, W.; Guo, H.; Chen, S.; et al. Investigation on the structure-performance of phthalic acid carboxyl position and carbon nitride towards efficient photocatalytic degradation of organic pollutants. Sep. Purif. Technol. 2022, 286, 120464. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, H. In-plane electric field induced by cyano groups and graphitic carbon structure for enhancing photocatalytic hydrogen production of carbon nitride. Sep. Purif. Technol. 2024, 330, 125260. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Labidi, A.; Ren, H.; Allam, A.A.; Rady, A.; Huang, Y.; Wei, S.; Padervand, M.; Ghasemi, S.; et al. Cyano/Hydroxyl Groups Co-Functionalized g-C3N4 for Photocatalytic NO Removal: A Synergistic Strategy towards Inhibition of Toxic Intermediate NO2. Catalysts 2023, 13, 1433. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Guo, Y.; Zhao, H.; Dong, Y.; Zhu, Y. Efficient Photocatalytic Selective Oxidation of Benzylamines over Cobalt Molecular Catalyst Covalently Bonded to Carboxyl Functionalized Carbon Nitride. Adv. Energy Sustain. Res. 2023, 4, 2300114. [Google Scholar] [CrossRef]
- Ming, L.; Yue, H.; Xu, L.; Chen, F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2014, 2, 19145–19149. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Fu, H.; Shi, Y.; Ling, L. Harmonizing the cyano- group and Na to enhance selective photocatalytic O2 activation on carbon nitride for refractory pollutant degradation. Proc. Natl. Acad. Sci. USA 2024, 121, e2318787121. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Y.; Sun, T.; Xue, B. Cyano and terminal amino group co-modified polymeric carbon nitride with boosted photocatalytic activity for degradation of dyes and antibiotics. Mater. Lett. 2020, 277, 128315. [Google Scholar] [CrossRef]
- Xing, W.; Zhang, T.; Shao, W.; Zhang, Y.; Li, P.; Han, J.; Wu, G.; Chen, G. Boosting surface charge transfer by aldehyde group grafted on loofah-sponge-like carbon nitride for visible light H2 evolution. Appl. Surf. Sci. 2023, 609, 155227. [Google Scholar] [CrossRef]
- Yu, K.; Li, Y.; Cao, X.; Wang, R.; Zhou, L.; Wu, L.; He, N.; Lei, J.; Fu, D.; Chen, T.; et al. In-situ constructing amidoxime groups on metal-free g-C3N4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(VI) extraction. J. Hazard. Mater. 2023, 460, 132356. [Google Scholar] [CrossRef]
- Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications and Applications. ACS Nano 2020, 14, 12390–12469. [Google Scholar] [CrossRef]
- Chen, D.; Wang, K.; Hong, W.; Zong, R.; Yao, W.; Zhu, Y. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal. B-Environ. 2015, 166–167, 366–373. [Google Scholar] [CrossRef]
- Hou, Y.; Cui, C.; Zhang, E.; Wang, J.; Li, Y.; Zhang, Y.; Zhang, Y.; Wang, Q.; Jiang, J. A hybrid of g-C3N4 and porphyrin-based covalent organic frameworks via liquid-assisted grinding for enhanced visible-light-driven photoactivity. Dalton Trans. 2019, 48, 14989–14995. [Google Scholar] [CrossRef]
- Xing, J.; Wang, N.; Li, X.; Wang, J.; Taiwaikuli, M.; Huang, X.; Wang, T.; Zhou, L.; Hao, H. Synthesis and modifications of g-C3N4-based materials and their applications in wastewater pollutants removal. J. Environ. Chem. Eng. 2022, 10, 108782. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Li, C.; Gao, M.; Cao, N.; Zhao, X.; Li, W.; Ding, X.; Li, Z.; Du, X.; et al. Facile fabrication metal Cu-decorated g-C3N4 photocatalyst with Schottky barrier for efficient pollutant elimination. Diamond Relat. Mater. 2022, 126, 109116. [Google Scholar] [CrossRef]
- Chen, M.; Guo, C.; Hou, S.; Wu, L.; Lv, J.; Hu, C.; Zhang, Y.; Xu, J. In-situ fabrication of Ag/P-g-C3N4 composites with enhanced photocatalytic activity for sulfamethoxazole degradation. J. Hazard. Mater. 2019, 366, 219–228. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Xu, Z.; Guo, F.; Li, Y.; Shi, W. Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity. Appl. Surf. Sci. 2023, 616, 156466. [Google Scholar] [CrossRef]
- Xin, S.; Ma, X.; Lu, J.; Zhang, G.; Huo, S.; Gao, M.; Xu, P.; Liu, W.; Fu, W. Enhanced visible light photoelectrocatalytic degradation of o-chloronitrobenzene through surface plasmonic Au nanoparticles and g-C3N4 co-modified TiO2 nanotube arrays photoanode. Appl. Catal. B-Environ. Energy 2023, 323, 122174. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Yao, B.; Xiao, K.; Wang, Y. Hollow g-C3N4@Ag3PO4 Core-Shell Nanoreactor Loaded with Au Nanoparticles: Boosting Photothermal Catalysis in Confined Space. Small 2024, 20, 2308032. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, L.; Sun, S.; Guo, X.; Tian, H.; Xia, Z.; Li, X.; Yan, X.; Jiao, Z. Photodeposition synthesis of hollow g-C3N4/Ag nanotubes with high oxidation properties to enhance visible-light photocatalytic performance. Mater. Res. Bull. 2024, 172, 112658. [Google Scholar] [CrossRef]
- Huang, Z.; Cai, X.; Zang, S.; Li, Y.; Zheng, D.; Li, F. Strong Metal Support Effect of Pt/g-C3N4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene. Int. J. Mol. Sci. 2023, 24, 6872. [Google Scholar] [CrossRef]
- Lei, M.; Wang, Z.; Zhu, L.; Nie, W.; Tang, H. Complete debromination of 2,2′,4,4′-tetrabromodiphenyl ether by visible-light photocatalysis on g-C3N4 supported Pd. Appl. Catal. B-Environ. 2020, 261, 118236. [Google Scholar] [CrossRef]
- Jin, L.; Tanzeel, Q.; Arif, U.; Ali, F.; Ali, N.; Haotian, C.; Mehmood, S.; Akbar, Y.; Raziq, F. Efficient photodegradation of organic dyes from industrial wastewater using novel Ni-decorated g-C3N4-TiO2 photocatalysts. Colloid Polym. Sci. 2024, 302, 487–502. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Review Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef]
- Li, N.; Gao, H.; Wang, X.; Zhao, S.; Lv, D.; Yang, G.; Gao, X.; Fan, H.; Gao, Y.; Ge, L. Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance. Chin. J. Catal. 2020, 41, 426–434. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Chen, M. Non-Noble Metal and Nonmetallic Plasmonic Nanomaterials with Located Surface Plasmon Resonance Effects: Photocatalytic Performance and Applications. Catalysts 2023, 13, 940. [Google Scholar] [CrossRef]
- Gonuguntla, S.; Kamesh, R.; Pal, U.; Chatterjee, D. Dye sensitization of TiO2 relevant to photocatalytic hydrogen generation: Current research trends and prospects. J. Photochem. Photobiol. C-Photochem. Rev. 2023, 57, 100621. [Google Scholar] [CrossRef]
- Zhang, N.; Wen, L.; Yan, J.; Liu, Y. Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: A brief review. Chem. Pap. 2020, 74, 389–406. [Google Scholar] [CrossRef]
- Bakhtiar, S.U.H.; Zada, A.; Raziq, F.; Ali, S.; Shah, M.I.A.; Ateeq, M.; Khan, M.; Alei, D.; Fazil, P.; Naeem, M.; et al. Zinc phthalocyanine sensitized g-C3N4 photocatalyst for exceptional photocatalytic hydrogen evolution and pollutant degradation. Int. J. Hydrogen Energy 2023, 48, 16320–16329. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Shen, Y.; Liu, S.; Zhang, Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yang, J.; Yuan, X.; Guo, J.; Liang, J.; Tang, W.; Chen, Y.; Li, X.; Wang, H.; Chu, W. Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Adv. Colloid Interface Sci. 2021, 296, 102523. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Lan, C.; Dong, X.; Zhang, X. New insight into enhanced photocatalytic selectivity of g-C3N4 by nitrogen vacancy introduction: Experimental study and theoretical calculation. Environ. Res. 2022, 212, 113390. [Google Scholar]
- Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B-Environ. 2020, 262, 118281. [Google Scholar] [CrossRef]
- Song, X.; Yang, Q.; Jiang, X.; Yin, M.; Zhou, L. Porous graphitic carbon nitride nanosheets prepared under self-producing atmosphere for highly improved photocatalytic activity. Appl. Catal. B-Environ. 2017, 217, 322–330. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, K.; Cui, M.; Liu, X.; Zhang, Q. Co-modification of carbon and cyano defect in g-C3N4 for enhanced photocatalytic peroxymonosulfate activation: Combined experimental and theoretical analysis. Sep. Purif. Technol. 2023, 316, 123844. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, X.; Zhang, L.; Cheng, H.; Shi, F.-N. 1T-WS2/NCN photocatalyst with unique trion behavior and cyano-defects: Photocatalytic hydrogen evolution and mechanistic insights. Sep. Purif. Technol. 2023, 325, 124743. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Li, R.; Zheng, M.; Zhou, X.; Zhang, D.; Shi, Y.; Li, C.; Yang, M. Carbon vacancies in porous g-C3N4 nanosheets induced robust H2O2 production for highly efficient photocatalysis-self-Fenton system for metronidazole degradation. Chem. Eng. J. 2023, 464, 142584. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Kamali, M.; Rossi, B.; Appels, L.; Dewil, R. Unraveling the Presence and Positions of Nitrogen Defects in Defective g-C3N4 for Improved Organic Photocatalytic Degradation: Insights from Experiments and Theoretical Calculations. Adv. Funct. Mater. 2024, 34, 2405741. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17. [Google Scholar] [CrossRef]
- Yadav, S.M.; Desai, M.A.; Sartale, S.D. Superoxide (•O2−) radical species driven type II TiO2/g-C3N4 heterojunction photocatalyst for RhB dye degradation. J. Mater. Sci.-Mater. Electron. 2023, 34, 1651. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, S.; Li, L.; Gu, P.; Wen, T.; Khan, A.; Li, S.; Li, B.; Wang, S.; Wang, X. Enhanced Visible-Light-Induced Photoactivity of Type-II CeO2/g-C3N4 Nanosheet toward Organic Pollutants Degradation. ACS Sustain. Chem. Eng. 2019, 7, 9699–9708. [Google Scholar] [CrossRef]
- Ge, F.; Li, X.; Wu, M.; Ding, H.; Li, X. A type II heterojunction α-Fe2O3/g-C3N4 for the heterogeneous photo-Fenton degradation of phenol. RSC Adv. 2022, 12, 8300–8309. [Google Scholar] [CrossRef]
- Mehtab, A.; Mao, Y.; Alshehri, S.M.; Ahmad, T. Photo/electrocatalytic hydrogen evolution using Type-II Cu2O/g-C3N4 Heterostructure: Density functional theory addresses the improved charge transport efficiency. J. Colloid Interface Sci. 2023, 652, 1467–1480. [Google Scholar] [CrossRef]
- Raj, M.G.; Vijayakumar, E.; Preetha, R.; Narendran, M.G.; Jennifer, G.A.; Varathan, E.; Neppolian, B.; Ganesh, V.K.; Bosco, A.J. Experimental investigation into the π-conjugated HT-g-C3N4/MoS2 (X) evokes the electron transport in type-II heterojunction to achieve high photocatalytic antibiotic removal under visible-light irradiation. Sep. Purif. Technol. 2022, 292, 121028. [Google Scholar]
- Wang, Y.; Li, J.; Chen, S.; Xie, Y.; Ma, Y.; Luo, Y.; Huang, J.; Ling, Y.; Ye, J.; Liang, Y.; et al. In situ loading of ZnIn2S4 nanosheets onto S doped g-C3N4 nanosheets to construct type II heterojunctions for improving photocatalytic hydrogen production. J. Alloys Compd. 2022, 924, 166569. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Wang, L.; Shou, Q.; Gao, M.; Wang, H.; Nazir, A.; Huo, P. Fabrication of g-C3N4/SnS2 type-II heterojunction for efficient photocatalytic conversion of CO2. J. Mater. Sci.-Mater. Electron. 2023, 34, 350. [Google Scholar] [CrossRef]
- Vinoth, S.; Pandikumar, A. Ni integrated S-gC3N4/BiOBr based Type-II heterojunction as a durable catalyst for photoelectrochemical water splitting. Renew. Energy 2021, 173, 507–519. [Google Scholar] [CrossRef]
- Vinoth, S.; Rajaitha, P.M.; Pandikumar, A. Modulating photoelectrochemical water splitting performance by constructing a type-II heterojunction between g-C3N4 and BiOI. New J. Chem. 2021, 45, 2010–2018. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Xu, Z.; Sun, H.; Amin, S.; Guo, F.; Shi, W.; Li, Y. Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation. Mater. Res. Bull. 2022, 150, 111789. [Google Scholar] [CrossRef]
- Li, Y.; Qin, T.; Chen, W.; Huang, M.; Xu, J.; Lv, J. Construction of a Switchable g-C3N4/BiVO4 Heterojunction from the Z-Scheme to the Type II by Incorporation of Pyromellitic Diimide. Cryst. Growth Des. 2022, 22, 1645–1653. [Google Scholar] [CrossRef]
- Sundararaj, S.B.; Amir, H.; Viswanathan, C.; Thangavelu, S. Photoelectrochemical Water Splitting: A Visible-Light-Driven CoTiO3@g-C3N4-Based Photoanode Interface Follows the Type II Heterojunction Scheme. Langmuir 2024, 40, 16582–16594. [Google Scholar] [CrossRef]
- Maridevaru, M.C.; Nagaveni, M.; Kumari, M.M.; Shankar, M.V.; Khraisheh, M.; Selvaraj, R. Unravelling the efficiency of CoAl-LDH/g-C3N4 nanosheets: Type-II heterojunction for photocatalytic hydrogen production and dye degradation under solar light irradiation. Int. J. Hydrogen Energy 2024, 89, 1112–1125. [Google Scholar] [CrossRef]
- Wang, C.; Kong, X.; Yu, Z.; Tao, X.; Huang, L.; Shang, S. Construction of g-C3N4/Fe-MOFs Type-II heterojunction promotes photo-Fenton degradation of doxycycline. Sep. Purif. Technol. 2023, 326, 124790. [Google Scholar] [CrossRef]
- Omori, F.; Tateishi, I.; Katsumata, H.; Furukawa, M.; Kaneco, S. Fabrication of pyridine incorporated and O-doped g-C3N4/COF: A type-II heterojunction for enhanced hydrogen production under visible light irradiation. J. Solid State Chem. 2025, 341, 125057. [Google Scholar] [CrossRef]
- Gao, C.; Sun, Y.; Yu, S.; Liu, L.; Liu, C.; Li, Y.; Wang, H.; Chang, X. Type-II heterojunction Se-g-C3N4/ZnO coupled MnCo2O4 photocatalyst for enhanced levofloxacin hydrochloride degradation activated by peroxymonosulfate. Chem. Eng. J. 2024, 500, 156944. [Google Scholar] [CrossRef]
- Song, B.; Wang, Q.; Wang, L.; Lin, J.; Wei, X.; Murugadoss, V.; Wu, S.; Guo, Z.; Ding, T.; Wei, S. Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants. J. Colloid Interface Sci. 2020, 559, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Balu, S.; Chen, Y.-L.; Chen, S.-W.; Yang, T.C.K. Rational synthesis of BixFe1-xVO4 heterostructures impregnated sulfur-doped g-C3N4: A visible-light-driven type-II heterojunction photo(electro)catalyst for efficient photodegradation of roxarsone and photoelectrochemical OER reactions. Appl. Catal. B-Environ. 2022, 304, 120852. [Google Scholar] [CrossRef]
- Bard, A.J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Meng, S.; Li, J.; Guo, D.; Fu, S.; Zhang, D.; Yang, X.; Sui, G. Oxygen Vacancy Engineering and Constructing Built-In Electric Field in Fe-g-C3N4/Bi2MoO6 Z-Scheme Heterojunction for Boosting Photo-Fenton Catalytic Degradation Performance of Tetracycline. Small 2024, 20, 2406125. [Google Scholar] [CrossRef]
- Zheng, D.; Pang, C.; Wang, X. The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chem. Commun. 2015, 51, 17467–17470. [Google Scholar] [CrossRef]
- Liu, X.; Cai, L. A novel double Z-scheme BiOBr-GO-polyaniline photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism. Appl. Surf. Sci. 2019, 483, 875–887. [Google Scholar] [CrossRef]
- Iwase, A.; Ng, Y.H.; Ishiguro, Y.; Kudo, A.; Amal, R. Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. J. Am. Chem. Soc. 2011, 133, 11054–11057. [Google Scholar] [CrossRef]
- Li, X.; Sun, H.; Xie, Y.; Liang, Y.; Gong, X.; Qin, P.; Jiang, L.; Guo, J.; Liu, C.; Wu, Z. Principles, synthesis and applications of dual Z-scheme photocatalysts. Coord. Chem. Rev. 2022, 467, 214596. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, H. Recyclable MXene-bridged Z-scheme NiFe2O4/MXene/Bi2WO6 heterojunction with enhanced charge separation for efficient sonocatalytic removal of ciprofloxacin. Sci. Total Environ. 2023, 901, 165833. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Su, Y.; Li, C.; Lv, X.; Li, W.; Yang, J.; Zhang, W.; Wang, H. Novel MOF-derived dual Z-scheme g-C3N4/Bi2O2CO3/β-Bi2O3 heterojunctions with enhanced photodegradation of tetracycline hydrochloride. Sep. Purif. Technol. 2025, 354, 128580. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B-Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. g-C3N4-Based 2D/2D Composite Heterojunction Photocatalyst. Small Struct. 2021, 2, 2100086. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme Photocatalyst. Adv. Mater. 2022, 34, 2107668. [Google Scholar] [CrossRef]
- Hao, P.; Chen, Z.; Yan, Y.; Shi, W.; Guo, F. Recent advances, application and prospect in g-C3N4-based S-scheme heterojunction photocatalysts. Sep. Purif. Technol. 2024, 330, 125302. [Google Scholar] [CrossRef]
- Duan, X.; Yang, J.; Zhu, J.; Li, H.; Fang, Y.; Liu, R.; Yang, C.; Liu, W.; Ding, C.; Liu, Q.; et al. Activated CdS/sulfur doped g-C3N4 photocatalyst for dye and antibiotic degradation: Experimental and DFT verification of S-scheme heterojunction. Environ. Res. 2025, 266, 120487. [Google Scholar] [CrossRef]
- Kumar, A.; Khosla, A.; Sharma, S.K.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F.J. A review on S-scheme and dual S-scheme heterojunctions for photocatalytic hydrogen evolution, water detoxification and CO2 reduction. Fuel 2023, 333, 126267. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, J.; Zhang, C.; Chen, F.; Song, Y.; Tang, Y. Construction of a novel double S-scheme heterojunction CeO2/g-C3N4/Bi2O4 for significantly boosted degradation of tetracycline: Insight into the dual charge transfer mode. Chem. Eng. J. 2024, 479, 147333. [Google Scholar] [CrossRef]
- Che, L.; Pan, J.; Cai, K.; Cong, Y.; Lv, S.-W. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review. Sep. Purif. Technol. 2023, 315, 123708. [Google Scholar] [CrossRef]
- Chen, W.; Huang, J.; He, Z.; Ji, X.; Zhang, Y.-F.; Sun, H.; Wang, K.; Su, Z. Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation. Sep. Purif. Technol. 2021, 277, 119461. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Zhang, J.; Tao, F.; Xu, J. Construction of NiO/g-C3N4 p-n heterojunctions for enhanced photocatalytic CO2 reduction. J. Solid State Chem. 2022, 308, 122878. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, Z.; Su, R.; Chen, Y.; Wang, Y.; Ma, D.; Li, Q. Revealing the reaction mechanism of the novel p-n heterojunction Mn3O4-C3N4 in efficient activation of chlorite to degrade organic pollutants under piezoelectric catalysis. Appl. Catal. B-Environ. 2025, 362, 124714. [Google Scholar] [CrossRef]
- Yang, S.; Wu, T.; Li, K.; Huang, P.; Li, W.; Zhuo, Y.; Liu, K.; Yang, Z.; Han, D. Photocatalytic Enhancement and Recyclability in Visible-Light-Responsive 2D/2D g-C3N4/BiOI p-n Heterojunctions via a Z-Scheme Charge Transfer Mechanism. Molecules 2024, 29, 5418. [Google Scholar] [CrossRef]
- Dharani, S.; Gnanasekaran, L.; Arunachalam, S.; Zielinska-Jure, A.; Almoallim, H.S.; Soto-Moscoso, M. Photodegrading rhodamine B dye with cobalt ferrite-graphitic carbon nitride (CoFe2O4/g-C3N4) composite. Environ. Res. 2024, 258, 119484. [Google Scholar] [CrossRef]
- Zhan, X.; Zeng, Y.; Zhang, Z.; Xia, Y.; Xu, J.; Hong, B.; Wang, X. G-C3N4 with gradient vacancies to enhance spatial charge carriers transfer and separation for photodegrading antibiotics under visible light. Chem. Eng. J. 2023, 474, 145948. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z.; Jiang, J.; Li, R.; Xiong, J. Preparation of heterojunction C3N4/WO3 photocatalyst for degradation of microplastics in water. Chemosphere 2023, 337, 139206. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, D.; Chang, Y.; Feng, Q.; Liu, Z.; Pang, M.; Meng, D.; Feng, Y.; Fan, C. Anchoring single-atom Cu on tubular g-C3N4 with defect engineering for enhanced Fenton-like reactions to efficiently degrade carbamazepine: Performance and mechanism. Chem. Eng. J. 2024, 479, 147841. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Sun, X.; Ji, H.; Liu, W.; Cai, Z. Construction of Z-scheme Ag/AgVO3/carbon-rich g-C3N4 heterojunction for enhanced photocatalytic degradation of sulfamethiadiazole: DFT calculation and mechanism study. Chem. Eng. J. 2022, 433, 133604. [Google Scholar] [CrossRef]
- Qin, L.; Meng, J.; Yang, G.; Pan, Y.; Gao, X.; Yang, Y.; Guo, Y. Interlayer single-atomic Fe-N4 sites on carbon-rich graphitic carbon nitride for notably enhanced photo-Fenton-like catalytic oxidation processes towards recalcitrant organic micropollutants. Appl. Catal. B-Environ. Energy 2024, 345, 123695. [Google Scholar] [CrossRef]
- Manh Dung, N.; Thanh Binh, N.; Linh Hai, T.; Thuy Giang, N.; Fatimah, I.; Kuncoro, E.P.; Doong, R.-A. Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation. Chem. Eng. J. 2023, 452, 139249. [Google Scholar] [CrossRef]
- Cheng, Z.; Ling, L.; Wu, Z.; Fang, J.; Westerhoff, P.; Shang, C. Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water. Environ. Sci. Technol. 2020, 54, 11584–11593. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xie, Y.; Rabeah, J.; Brueckner, A.; Cao, H. Visible-Light Photocatalytic Ozonation Using Graphitic C3N4 Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment. Acc. Chem. Res. 2020, 53, 1024–1033. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, Z.; Huang, X.; Bai, C.; Zhu, K.; Chen, X.; Zhang, B.; Zhang, Y.; Yang, Q.; Zheng, J.; et al. Efficient photo-switchable activation of periodate by nitrogen-vacancy-rich carbon nitride for organic contaminant removal: Theoretical predictions and experimental validations. Appl. Catal. B-Environ. 2023, 337, 122994. [Google Scholar] [CrossRef]
- You, Q.; Zhang, C.; Cao, M.; Chen, P.; Wang, B.; Wang, Y.; Huang, J.; Deng, S.; Yu, G. Coordinating the exciton-mediated and carrier-mediated photocatalytic mechanisms of carbon nitride using acetylacetone for enhancing emerging contaminants removal. Appl. Catal. B-Environ. Energy 2023, 338, 123025. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, S.; Wang, Z.; Li, W.; Li, B.; Zhang, H.; Xin, Y.; Wu, K.; Ma, J.; He, X. Enhanced permanganate activation by g-C3N4 under visible light irradiation: Unraveled mechanism involving Mn(V) and photo-induced electron. Appl. Catal. B-Environ. Energy 2024, 349, 123861. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, J.; Zhang, J.; Chen, X.; Wang, Z.; Zhang, Y.; Li, D.; Chen, J.; Liu, H.; Chen, P.; et al. Carbon nitride nanotubes anchored with Cu(I) triggers peracetic acid activation with visible light for removal of antibiotic contaminants: Probing mechanisms of non-radical pathways and identifying active sites. J. Hazard. Mater. 2023, 460, 132401. [Google Scholar] [CrossRef]
- Zhang, B.; Kong, L.; Yan, X.; Zhang, H.; Wang, Z.; Xia, S.; Han, Z.; Xin, Y.; Ding, A.; Ma, J.; et al. Recent progress in graphitic carbon nitride-based catalysts for water treatment: Contaminant elimination, disinfection and membrane applications. Sep. Purif. Technol. 2025, 354, 129420. [Google Scholar] [CrossRef]
Strategy | Advantages | Limitations |
---|---|---|
Morphology control | Various morphology can be chosen to meet different application requirements, and the modification process is highly adaptable. | Precise control over the morphology and size remains a challenge. |
Doping | The doping procedure is simple and easy to implement. | Certain dopants may result in a decrease in specific surface area, and my increase potential risk from metal leaching. |
Functionalization | The required properties can be selectively introduced through various functional groups. | Most functionalization methods are not environmentally friendly, and g-C3N4 functionalized with non-covalent groups tends to exhibit poor stability. |
Metal deposition | The localized surface plasmon resonance effect can expand the light absorption range, and the formation of a Schottky barrier can accelerate electron transfer. | Noble metals are expensive. |
Dye sensitization | The dye can be designed and synthesized in a controlled manner, with adjustments to the appropriate CB and light absorption range. | The sensitizing dye may decompose during photocatalytic degradation process. |
Defect engineering | Vacancies adjust the energy band alignment and create trap states that enhance charge carrier separation and transfer. | Excess defects narrow the bandgap, reduce the redox capacity of charge carriers, and increase their recombination. |
Construction of heterojunctions | Significantly enhances electron–hole pair separation and reduces their recombination. | Precise control of material interfaces is required in constructing heterojunction photocatalysts. |
Doped Element | Pollutant | Concentration (mg L−1) | Degradation Efficiency | Kinetic Constant k (min−1) | Enhancement Factor of k over Reference Photocatalyst | Reference |
---|---|---|---|---|---|---|
Li | RhB | 10 | 98.0% | 0.082 | 6.8 times | [46] |
Na | MB | 20 | 98.5% | 0.066 | 3.6 times | [47] |
K | TMP | 100 | 90.8% | 0.038 | 2.4 times | [43] |
Ca | ENR | 5 | - | 0.046 | 3.3 times | [48] |
Mg | OTC | 20 | 80% | 0.012 | 2.6 times | [49] |
Fe | RhB | 10 | 100% | 0.117 | 10 times | [50] |
Co | MB | 10 | 96% | 0.013 | 1.7 times | [51] |
Ni | TC | 10 | 77% | 0.006 | 2.8 times | [52] |
Cu | IBP | 5 | 93% | 0.089 | 2.3 times | [53] |
Ag | RhB | 10 | 97.2% | 0.205 | 4.9 times | [54] |
B | 4-CP | 20 | 100% | 0.092 | 4.9 times | [55] |
C | BPA | 10 | 96% | 0.053 | 10.6 times | [56] |
O | 2,4-DNP | 10 | 100% | 0.038 | 1.6 times | [57] |
N | TC | 20 | 93% | 0.135 | 8.5 times | [58] |
S | ATZ | 2 | 99.6% | 0.046 | 2.4 times | [59] |
P | 2,4-D | 1 | 90% | 0.043 | 4.0 times | [60] |
F | TC | 10 | 99.8% | 0.021 | 1.7 times | [61] |
Cl | TC | 10 | 92% | 0.020 | 5.2 times | [62] |
Br | OTC | 10 | 75% | 0.018 | 4.3 times | [63] |
I | TC | 10 | 99.8% | 0.032 | 2.6 times | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Y.; Hu, Y.; Cheng, H. Recent Progress in g-C3N4-Based Photocatalysts for Organic Pollutant Degradation: Strategies to Improve Photocatalytic Activity. Catalysts 2025, 15, 148. https://doi.org/10.3390/catal15020148
Ruan Y, Hu Y, Cheng H. Recent Progress in g-C3N4-Based Photocatalysts for Organic Pollutant Degradation: Strategies to Improve Photocatalytic Activity. Catalysts. 2025; 15(2):148. https://doi.org/10.3390/catal15020148
Chicago/Turabian StyleRuan, Yang, Yuanan Hu, and Hefa Cheng. 2025. "Recent Progress in g-C3N4-Based Photocatalysts for Organic Pollutant Degradation: Strategies to Improve Photocatalytic Activity" Catalysts 15, no. 2: 148. https://doi.org/10.3390/catal15020148
APA StyleRuan, Y., Hu, Y., & Cheng, H. (2025). Recent Progress in g-C3N4-Based Photocatalysts for Organic Pollutant Degradation: Strategies to Improve Photocatalytic Activity. Catalysts, 15(2), 148. https://doi.org/10.3390/catal15020148