Plasma-Activated Homogeneous Catalysis for Water Decontamination: Mechanisms, Synergies, and Future Perspectives
Abstract
1. Introduction
2. Fundamentals of Plasma Technology
| Character | DBD | Corona | Pulsed Corona | Gliding Arc | Glow Discharge |
|---|---|---|---|---|---|
| Structure | Plate-to-plate, coaxial | Needle–plate, thread–cylinder | Thread–cylinder, needle–plate | Knife-shaped electrode | Parallel plate electrode |
| Modality | Filiform/Uniform | Streamer/Corona layer | Streamer/Corona layer | Arc of gliding arc | Be diffused and uniform |
| Energetic efficiency | Medium | Medium | High | Medium | Medium |
| Power density | Medium | Low | High | High | Low |
| Active substances | ·OH, O3, UV | ·OH, O3 | ·OH, UV, Shock wave | ·OH, O3, NOx | ·OH, e− |
| Interact with the liquid | Direct contact | Gas phase mass transfer | Gas–liquid interface | Gas–liquid interface | Spraying or sputtering |
| Gas temperature (K) | 300–1000 | 300–500 | 300–500 | ~1 (arc core), ~10 (wake flame) | 1–10 |
| Power source | AC HV | AC/DC HV | Nanosecond pulse HV | AC/DC HV | AC/DC LF |
| System complexity | Medium | Low | High | Medium | High |
| Major areas | VOCs degradation, water treatment | Flue gas purification, ozone generation | Refractory wastewater treatment | Surface modification of materials | Precision cleaning, material composition |
| Advantage | The structure is simple and stable | Simple equipment, low energy consumption | High energy efficiency with fewer by-products | Uniform discharge and good controllability | Plasma density is high, no electrode pollution |
| Disadvantage | The electrode may corrode | Uneven discharge | Expensive price | System requirements are high | The system is complex and the investment is large |
| Ref. | [56] | [57] | [58] | [59] | [60] |
3. Plasma-Activated Homogeneous Catalysts
3.1. Peroxymonosulfate (PMS)
| Author | Target | PMS Concentration | Conditions | Time/min | Degradation Rate |
|---|---|---|---|---|---|
| Wu et al. [68] | Benzotriazole (BTA) | 2.52 mM | Initial concentration: 10 mg/L Voltage: 12 kV Conductivity: 920–1000 µs/cm pH: 6.2 | 20 | 87% |
| Luo et al. [69] | Potassium ethyl xanthate (PEX) | Molar ratio of PMS and PEX = 30:1 | Initial concentration: 20 mg/L Voltage: 27.5 kV pH: 7 | 25 | 91% |
| Shang et al. [70] | Sulfamethoxazole (SMX) | 0.8 mM | Initial concentration: 0.08 mM Voltage: 26 kV Conductivity: 26–512 µs/cm pH: 10 | 25 | Almost 100% |
| Deng et al. [71] | Sulfadiazine (SDZ) | 0.4 mM | Initial concentration: 10 mg/L Voltage: 12 kV Frequency: 9.2 kHz pH: 7 | 15 | 92% |
| Sang et al. [72] | Chlortetracycline (CTC) | 0.8 mM | Initial concentration: 75 mg/kg Voltage: 12 kV Frequency: 10 kHz | 30 | 82% |
| Rahman et al. [73] | Complex organic compounds | 10 mM | Initial concentration: 130 mg/L Voltage: 9 kV Current: 50 mA Power: 7.77 W | 60 | 82% |
| Jia et al. [74] | Perfluorooctanoic acid (PFOA) | 20.8 mM | Initial concentration: 75 mg/L Power: 38.52 W Energy consumption: 399.14 mg/kWh pH: 2 | 60 | 99% |
3.2. Peracetic Acid (PAA)
| Author | Target | PAA Concentration | Conditions | Time/min | Degradation Rate |
|---|---|---|---|---|---|
| Wu et al. [78] | Tetracycline (TC) | 60 mg/L | Initial concentration: 20 mg/L Voltage: 21 kV Frequency: 50 Hz Conductivity (σ): 200 μS/cm pH: 5 | 60 | 86% |
| Li et al. [79] | Sulfamethoxazole (SMX) | 20 mg/L | Initial concentration: 20 mg/L Power: 120 W pH: 6.7 | 30 | 52% |
| Su et al. [81] and Han et al. [83] | Bisphenol A (BPA) | 3 mM | Initial concentration: 40 mg/L Power: 445 W/450 W Frequency: 3500 Hz pH: 4.5/4.8 Liquid flow rate: 100 mL/min | 15 | 93% |
| Yang et al. [84] | Chlorella | 0.15 g/L | Initial concentration: 0.100 (OD680) Voltage: 180 V pH: 3.5 | 15 | 95% |
3.3. Periodate (PI)
| Author | Target | PI Concentration | Conditions | Time/min | Degradation Rate |
|---|---|---|---|---|---|
| Puyang et al. [89] | Sulfadiazine (SDZ) | 6 mM | Initial concentration: 20 mg/L Power: 560 W pH: 3.8 | 12 | 99% |
| Kim et al. [90] | Tetramethylammonium hydroxide (TMAH) | 4 mM | Initial concentration: 10.4 mg/L Power: 40.56 W pH: 10 | 60 | 30% |
| Jiang et al. [91] | Sulfadiazine (SDZ) | 3 mM | Initial concentration: 40 mg/L Power: 510 W pH: 3.2 | 12 min | 94% |
| Zhang et al. [92] | Atrazine (ATZ) | 0.01 mM | Initial concentration: 10 mg/L Power: 68 W pH: 5 | 10 min | 87% |
3.4. H2O2
| Author | Target | H2O2 Concentration | Conditions | Time/min | Degradation Rate |
|---|---|---|---|---|---|
| Wu et al. [78] | Tetracycline (TC) | 95 mg/L | Initial concentration: 20 mg/L Voltage: 21 kV Frequency: 50 Hz Conductivity (σ): 200 μS/cm pH: 5 | 60 | 52% |
| Ma et al. [104] | Auricularia auricula polysaccharide (AAP) | 2% (w/v) | Initial concentration: 0.3% (w/v) Electrodes distance: 2 mm | 180 | 91% |
| Lee et al. [107] | Bacillus coli | 20% | Initial concentration: 4.6 log CFU/g Voltage: 24.5 kV | 3 | 94% |
| Boscariol et al. [108] | Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) | 5% | Power: 400 W | 40 | Almost 100% |
| Kim et al. [109] | Salmonella | 20% | Voltage: 24.5 kV | 2 min | Inactivation level: 0.9 ± 0.1 log CFU/g |
3.5. Fenton Reagents (Fe2+/Fe3+)
| Author | Target | Fe2+/Fe3+ Concentration | Conditions | Time/min | Degradation Rate |
|---|---|---|---|---|---|
| Tao et al. [119] | Methyl orange (MO) | FeSO4·7H2O: FeCl3·6H2O = 1 mol:5 mol | Initial concentration: 200 mg/L | 6 | 99% |
| Grbić et al. [120] | Lignin | FeCl3·6H2O:H2O2 = 1:25 | / | 30 | 53% |
| Kavian et al. [121] | Phenolic | 0.4 mM | Initial concentration: 100 mg/L pH: 5.95 | 10 | 87% |
| Liu et al. [122] | Cu-ethylenediaminetetraacetic acid (Cu-EDTA) | 2.0 g/L | Initial concentration: 0.3 mM Voltage: 6 kV Frequency: 7 kHz Power: 25.6 W pH: 2 | 2 | 72% |
| Kim et al. [123] | Rhodamine B (RhoB)/ Reactive black 5 (RB5) | 1.0 g/L | Initial concentration: 10 mg/L Frequency: 22 kHz Power: 100 W Gas flow rate: 20 LPM | 30 | Almost 100% |
| Catalyst System | Primary Active Species | Core Synergistic Mechanism | Advantages | Disadvantages | Ref. |
|---|---|---|---|---|---|
| PMS | ·SO4−, ·OH, ·O2−, 1O2 | Multi-path activation by electrons/UV | Broad pH range, high selectivity | Cost, sulfate residue | [124] |
| PAA | ·CH3C(O)O, ·OH, 1O2 | O-O bond cleavage to organic radicals | Eco-friendly, diverse pathways | High cost, complex byproducts | [125] |
| PI | ·IO3, ·IO4, ·OH | Electron transfer to iodine radicals | Self-sufficient, low cost | Limited yield, mass transfer issues | [126] |
| H2O2 | ·OH, ·HO2 | In situ generation and activation | Neutral pH operation, less sludge | Iron separation, anion interference | [127] |
| Fe2+/Fe3+ | ·OH, ·HO2 | Enhanced Fe2+/Fe3+ cycle and H2O2 production | High selectivity, fast kinetics | Cost, iodinated byproducts | [120] |
3.6. Other Homogeneous Catalysis
| Plasma System | Target Pollutant | Key Energy Efficiency Metric | Value | Ref. |
|---|---|---|---|---|
| Pulsed Corona | Refractory Wastewater | Energy Consumption (kWh/m3) | 10–100 | [58] |
| DBD/PMS | Perfluorooctanoic acid (PFOA) | Energy Yield (mg/kWh) | 399 | [74] |
| DBD/PAA | Bisphenol A (BPA) | G50 (g/kWh) | 212 | [81] |
| Plasma/PI | Sulfadiazine (SDZ) | Pseudo-first-order k (min−1) | 0.5 | [91] |
| Plasma/ Fenton | Phenol | Pseudo-first-order k (min−1) | 0.2 | [121] |
| DBD/ Hydroxylamine | Tetracycline (TC) | G50 (g/kWh) | 3 | [131] |
| DBD/PS | Acid Orange 7 (AO7) | Pseudo-first-order k (min−1) | 7 | [132] |
4. Influencing Factors
4.1. Plasma Operational Parameters
4.2. Catalyst Dosage and Activation Kinetics
4.3. Pollutant-Directed Catalyst Selection
5. Mechanisms of Pollutant Degradation
6. Practical Considerations and Challenges
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2020, 92, 473–505. [Google Scholar] [CrossRef]
- Casas, G.; Martinez-Varela, A.; Vila-Costa, M.; Jiménez, B.; Dachs, J. Rain Amplification of Persistent Organic Pollutants. Environ. Sci. Technol. 2021, 55, 12961–12972. [Google Scholar] [CrossRef]
- Ang, W.L.; McHugh, P.J.; Symes, M.D. Sonoelectrochemical processes for the degradation of persistent organic pollutants. Chem. Eng. J. 2022, 444, 136573. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Gunten, U.V.; Wehrli, B. Global water pollution and human health. Annu. Rev. Env. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, G.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, 6580. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Huang, B.D.; Gao, Y.X.; Dong, Y.X.; Wang, Q.; Zhang, L.L.; Zhang, C.; Yu, J.W.; Yang, M. Spatially-confined bubble plasma oxidation induced by microchannel discharge to boost energy efficiency in water treatment. Water Res. 2025, 287, 124452. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.B.; Zhang, Q.H.; Yan, Z.F.; Xue, Q.Z. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.Y.; Qiu, R.L.; Tang, Y.T.; Du, C.M. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem. Eng. J. 2016, 353, 157–170. [Google Scholar] [CrossRef]
- George, A.; Shen, B.X.; Craven, M.; Wang, Y.L.; Kang, D.R.; Wu, C.F.; Tu, X. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renew. Sustain. Energy Rev. 2020, 135, 10902. [Google Scholar] [CrossRef]
- Zhou, R.W.; Zhou, R.S.; Alam, D.; Zhang, T.Q.; Li, W.S.; Xia, Y.; Mai-Prochnow, A.; An, H.J.; Lovell, E.C.; Masood, H.; et al. Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chem. Eng. J. 2020, 403, 126413. [Google Scholar] [CrossRef]
- Hsieh, K.; Wang, H.J.; Locke, B.R. Analysis of a gas-liquid film plasma reactor for organic compound oxidation. J. Hazard. Mater. 2016, 317, 188–197. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, A.; Miruka, A.C.; Wang, L.; Li, X.; Xue, G.; Liu, Y.N. Synergistic effects and mechanisms of plasma coupled with peracetic acid in enhancing short-chain fatty acid production from sludge: Motivation of reactive species and metabolic tuning of microbial communities. Bioresour. Technol. 2023, 387, 129618. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Du, J.; Zhang, B.J.; Li, J.X.; Lai, B. Decontamination of heavy metal complexes by advanced oxidation processes: A review. Chin. Chem. Lett. 2020, 31, 2575–2582. [Google Scholar] [CrossRef]
- Deniere, E.; Hulle, S.V.; Langenhove, H.V.; Demeestere, K. Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: The role of different oxidative species. J. Hazard. Mater. 2018, 360, 204–213. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Peng, Y.T.; Tang, H.M.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y.Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chem. Eng. J. 2021, 414, 128800. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W.Y. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Fan, X.Y.; Stratton, G.R.; Bellona, C.L.; Holsen, T.M.; Crimmins, B.S.; Xia, X.Y.; Thagard, S.M. Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of Bisphenol A in a high voltage plasma reactor. J. Hazard. Mater. 2016, 308, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.H.; Xu, C.; Wang, L.; Yu, J.; Zhu, Q.R.; Sun, S.Q.; Tu, X.; Meng, C.G.; Zhang, J.L.; Guo, H.C. Selectivity control of H2/O2 plasma reaction for direct synthesis of high purity H2O2 with desired concentration. Chem. Eng. J. 2016, 313, 37–46. [Google Scholar] [CrossRef]
- Feng, W.J.; He, F.Y.; Chen, X.R.; Jiang, B.Q.; Wang, H.Q.; Wu, Z.B. Optimizing the CeO2-MnO2 interface via H2O2 etching for surface lattice oxygen activation in the plasma catalytic degradation of trimethylamine. Chem. Eng. J. 2024, 488, 150804. [Google Scholar] [CrossRef]
- Hirami, Y.; Hunge, Y.M.; Suzuki, N.; Rodríguez-González, V.; Kondo, T.; Yuasa, M.; Fujishima, A.; Teshima, K.; Terashima, C. Enhanced degradation of ibuprofen using a combined treatment of plasma and Fenton reactions. J. Colloid Interface Sci. 2023, 642, 829–836. [Google Scholar] [CrossRef]
- Ding, Y.B.; Fu, L.B.; Peng, X.Q.; Lei, M.; Wang, C.J.; Jiang, J.Z. Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: Certainties and uncertainties. Chem. Eng. J. 2021, 427, 117731. [Google Scholar] [CrossRef]
- Wang, A.; Hou, Z.Y. Reducing energy consumption in plasma NO conversion utilizing plasma aerodynamic effect. Chem. Eng. J. 2020, 408, 127286. [Google Scholar] [CrossRef]
- Cubas, A.L.V.; Ferreira, F.M.; Gonçalves, D.B.; Machado, M.D.M.; Debacher, N.A.; Moecke, E.H.S. Influence of non-thermal plasma reactor geometry and plasma gas on the inactivation of Escherichia coli in water. Chemosphere 2021, 277, 130255. [Google Scholar] [CrossRef]
- Elhambakhsh, A.; Long, N.V.D.; Lamichhane, P.; Hessel, V. Recent progress and future directions in plasma-assisted biomass conversion to hydrogen. Renew. Energy 2023, 218, 119307. [Google Scholar] [CrossRef]
- Oost, G. Applications of Thermal Plasmas for the Environment. Appl. Sci. 2022, 12, 7185. [Google Scholar] [CrossRef]
- Gibson, E.K.; Stere, C.E.; Curran-McAteer, B.; Jones, W.; Cibin, G.; Gianolio, D.; Goguet, A.; Wells, P.P.; Catlow, C.R.A.; Collier, P.; et al. Christopher Hardacre. Probing the Role of a Non-Thermal Plasma (NTP) in the Hybrid NTP Catalytic Oxidation of Methane. Angew. Chem. Int. Ed. 2017, 56, 93351–99355. [Google Scholar] [CrossRef]
- Gao, Q.; Li, K.; Qin, L.; Zhang, Y.; Xi, X.C.; Zhao, W. A discharge plasma regulation method with spike current for electrical discharge machining. J. Manuf. Process. 2024, 125, 402–414. [Google Scholar] [CrossRef]
- Clyne, T.W.; Troughton, S.C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Plasma Sources Sci. T. 2018, 64, 127–162. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wang, K.; Wu, K.Y.; Guo, Y.T.; Liu, Z.G.; Yang, D.; Zhang, W.J.; Luo, H.Y.; Fu, Y.Y. Air disinfection by nanosecond pulsed DBD plasma. J. Hazard. Mater. 2024, 472, 134487. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Cui, X.; Lu, T.B.; Li, D.Y.; Chen, B.; Fu, Y.K. Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge. Phys. Plasmas 2016, 23, 123516. [Google Scholar] [CrossRef]
- Moortel, N.V.D.; Broeck, R.V.D.; Degrève, J.; Dewil, R. Comparing glow discharge plasma and ultrasound treatment for improving aerobic respiration of activated sludge. Water Res. 2017, 122, 207–215. [Google Scholar] [CrossRef]
- Zhan, J.X.; Zhang, A.; Héroux, P.; Guo, Y.; Sun, Z.Y.; Li, Z.Y.; Zhao, J.Y.; Liu, Y.N. Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma. J. Hazard. Mater. 2019, 387, 121688. [Google Scholar] [CrossRef]
- Wang, W.Z.; Mei, D.H.; Tu, X.; Bogaerts, A. Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach. Chem. Eng. J. 2017, 330, 11–25. [Google Scholar] [CrossRef]
- Karoui, S.; Saoud, W.A.; Ghorbal, A.; Fourcade, F.; Amrane, A.; Assadi, A.A. Intensification of non-thermal plasma for aqueous Ciprofloxacin degradation: Optimization study, mechanisms, and combined plasma with photocatalysis. J. Water Process. Eng. 2022, 50, 103207. [Google Scholar] [CrossRef]
- Topolovec, B.; Škoro, N.; Puač, N.; Petrovic, M. Pathways of organic micropollutants degradation in atmospheric pressure plasma processing—A review. Chemosphere 2022, 294, 133606. [Google Scholar] [CrossRef]
- Russo, M.; Iervolino, G.; Vaiano, V.; Palma, V. Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020, 10, 1438. [Google Scholar] [CrossRef]
- Wang, Y.S.; Song, J.L.; Zhu, R.T.; Peng, M.B.; Long, J.; Bao, T. Degradation of pharmaceutical contaminants in wastewater by non-thermal plasma technology: A comprehensive Review. J. Environ. Chem. Eng. 2025, 13, 116150. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.W.; Liao, L.N.; Li, Z.; Pan, S.J.; Puyang, C.D.; Su, Y.Y.; Zhang, Y.; Wang, T.C.; Ren, J.Y.; et al. Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation. Chem. Eng. J. 2022, 436, 135239. [Google Scholar] [CrossRef]
- Asghari, M.; Samani, B.M.; Ebrahimi, R. Review on non-thermal plasma technology for biodiesel production: Mechanisms, reactors configuration, hybrid reactors. Energy Convers. Manag. 2022, 258, 115514. [Google Scholar] [CrossRef]
- Jiang, N.; Qu, Y.; Zhu, J.W.; Wang, H.C.; Li, J.; Shu, Y.; Cui, Y.T.; Tan, Y.L.; Peng, B.F.; Li, J. Remediation of atrazine-contaminated soil in a fluidized-bed DBD plasma reactor. Chem. Eng. J. 2023, 464, 142467. [Google Scholar] [CrossRef]
- Li, Y.H.; Chen, C.T.; Fang, H.K. Effects of a microwave-induced corona discharge plasma on premixed methane-air flames. Energy 2019, 188, 116007. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhang, S.; Hu, X.C.; Liu, Y.D.; Shao, T. Deep learning-assisted pulsed discharge plasma catalysis modeling. Energy Convers. Manag. 2022, 277, 1116620. [Google Scholar] [CrossRef]
- Kang, H.; Choi, S.; Jung, C.M.; Kim, K.; Song, Y.; Lee, D.H. Variations of methane conversion process with the geometrical effect in rotating gliding arc reactor. Int. J. Hydrogen Energy 2020, 45, 30009–30016. [Google Scholar] [CrossRef]
- Wang, W.Z.; Kim, H.; Laer, K.V.; Bogaerts, A. Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chem. Eng. J. 2017, 334, 2467–2479. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, X.; Li, T.Y.; Cheng, Y. Characteristics and applications of plasma assisted chemical processes and reactors. Curr. Opin. Chem. Eng. 2017, 17, 68–77. [Google Scholar] [CrossRef]
- Vecten, S.; Wilkinson, M.; Bimbo, N.; Dawson, R.; Herbert, B.M.J. Experimental investigation of the temperature distribution in a microwave-induced plasma reactor. Fuel Process. Technol. 2021, 212, 106631. [Google Scholar] [CrossRef]
- Rosa, V.; Cameli, F.; Stefanidis, G.D.; Geem, K.M.V. Integrating Materials in Non-Thermal Plasma Reactors: Challenges and Opportunities. Acc. Mater. Res. 2024, 5, 1024–1035. [Google Scholar] [CrossRef]
- Bali, N.; Aggelopoulos, C.A.; Skouras, E.D.; Tsakiroglou, C.D.; Burganos, C.D. Modeling of a DBD plasma reactor for porous soil remediation. Chem. Eng. J. 2019, 373, 393–405. [Google Scholar] [CrossRef]
- Saleem, M.; Biondo, O.; Sretenović, G.; Tomei, G.; Magarotto, M.; Pavarin, D.; Marotta, E.; Paradisi, C. Comparative performance assessment of plasma reactors for the treatment of PFOA; reactor design, kinetics, mineralization and energy yield. Chem. Eng. J. 2019, 382, 123031. [Google Scholar] [CrossRef]
- Vertongen, R.; Trenchev, G.; Loenhout, R.V.; Bogaerts, A. Enhancing CO2 conversion with plasma reactors in series and O2 removal. J. CO2 Util. 2022, 66, 102252. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Palma, V. Enhanced azo dye removal in aqueous solution by H2O2 ssisted non-thermal plasma technology. Environ. Technol. Inno. 2020, 19, 100969. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, X.Y.; Ding, Y.Q.; Jiang, N.; Ping, Q.; Wang, L.; Liu, Y.N. Simultaneous removal of antibiotics and antibiotic resistance genes in wastewater by a novel nonthermal plasma/peracetic acid combination system: Synergistic performance and mechanism. J. Hazard. Mater. 2023, 452, 131357. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.T.; Jang, S.B.; Choong, C.E.; Kang, C.W.; Lee, G.C.; Song, J.Y.; Yoon, Y.; Jang, M. In situ Fenton remediation for diesel contaminated clayey zone assisted by thermal plasma blasting: Synergism and cost estimation. Chemosphere 2021, 286, 131574. [Google Scholar] [CrossRef]
- García-Moncada, N.; Rooij, G.V.; Cents, T.; Lefferts, L. Catalyst-assisted DBD plasma for coupling of methane: Minimizing carbon-deposits by structured reactors. Catal. Today 2020, 369, 210–220. [Google Scholar] [CrossRef]
- Ji, W.; Qu, G.F.; Zhou, J.H.; Ning, P.; Li, J.Y.; Tang, H.M.; Pan, K.H.; Xie, R.S. Cracking of toluene by corona plasma combined with MnO2/CeO2 catalyst loaded on corona anode surface. Sep. Purif. Technol. 2023, 320, 124185. [Google Scholar] [CrossRef]
- Lu, N.; Wang, C.H.; Lou, C. Remediation of PAH-contaminated soil by pulsed corona discharge plasma. J. Soils Sediments 2016, 17, 97–105. [Google Scholar] [CrossRef]
- Song, F.L.; Wu, Y.; Xu, S.D.; Yang, X.K.; Zhou, J.P.; Chen, X. Gliding arc plasma adjusting pre-combustion cracking products. Def. Technol. 2021, 18, 2198–2202. [Google Scholar] [CrossRef]
- Campelo, P.H.; Filho, E.G.A.; Silva, L.M.A.; Brito, E.S.D.; Rodrigues, S.; Fernandes, F.A.N. Modulation of aroma and flavor using glow discharge plasma technology. Innov. Food Sci. Emerg. Technol. 2020, 62, 102363. [Google Scholar] [CrossRef]
- You, C.S.; Jung, S.C. Decomposition of the antibiotic sulfamethoxazole by the liquid-phase plasma process enhanced by peroxymonosulfate. J. Ind. Eng. Chem. 2023, 131, 422–431. [Google Scholar] [CrossRef]
- Hua, W.J.; Kang, Y.; Liu, S. Synergistic removal of aqueous ciprofloxacin hydrochloride by water surface plasma coupled with peroxymonosulfate activation. Sep. Purif. Technol. 2022, 303, 122301. [Google Scholar] [CrossRef]
- Metz, J.; Zuo, P.X.; Wang, B.; Wong, M.S.; Alvarez, P.J.J. Perfluorooctanoic acid Degradation by UV/Chlorine. Environ. Sci. Technol. Lett. 2022, 9, 673–679. [Google Scholar] [CrossRef]
- Emam, H.E.; Ahmed, H.B. Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int. J. Biol. Macromol. 2019, 138, 450–461. [Google Scholar]
- Li, J.; Yin, X.H.; Liu, Z.K.; Gu, Z.L.; Niu, J.X. Reaction yield model of nitrocellulose alkaline hydrolysis. J. Hazard. Mater. 2019, 371, 603–608. [Google Scholar] [CrossRef]
- Hua, W.J.; Kang, Y.; Yuan, H.X. Efficient degradation of emerging pollutant-malachite green in water by pulsed discharge plasma on water surface in cooperation with Fe2+/PMS. Environ. Pollut. 2024, 359, 124773. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Wang, P.; Liu, X.M.; Hu, L.M.; Wang, Q.; Xu, P.; Zhang, G.S. Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate. Chem. Eng. J. 2020, 389, 124381. [Google Scholar] [CrossRef]
- Wu, J.L.; Xiong, Q.; Liang, J.L.; He, Q.; Yang, D.X.; Deng, R.Y.; Chen, Y. Degradation of benzotriazole by DBD plasma and peroxymonosulfate: Mechanism, degradation pathway and potential toxicity. Chem. Eng. J. 2019, 384, 123300. [Google Scholar] [CrossRef]
- Sun, P.Z.; Zhang, T.Q.; Mejia-Tickner, B.; Zhang, R.C.; Cai, M.Q.; Huang, C.H. Rapid Disinfection by Peracetic Acid Combined with UV Irradiation. Environ. Sci. Technol. Lett. 2018, 5, 400–404. [Google Scholar] [CrossRef]
- Shang, K.F.; Morent, R.; Wang, N.; Wang, Y.X.; Peng, B.F.; Jiang, N.; Lu, N.; Li, J. Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation. Chem. Eng. J. 2022, 431, 133916. [Google Scholar] [CrossRef]
- Deng, R.Y.; Yang, D.X.; Chen, M.L.; He, Q.; He, Q.J.; Chen, Y. The enhancing energy efficiency of sulfadiazine degradation using a DBD-contact plasma treatment process. Chem. Eng. J. 2023, 463, 142491. [Google Scholar] [CrossRef]
- Sang, W.J.; Bao, H.Q.; Pang, L.Q.; Cheng, K.W.; Li, M.; Zou, L. Degradation of chlortetracycline in sludge by dielectric barrier discharge plasma coupled with peroxymonosulfate: Performance and mechanism. J. Water Process. Eng. 2024, 57, 106273. [Google Scholar] [CrossRef]
- Rahman, N.A.; Basheer, R.V.; Yoon, S.Y.; Choong, C.E.; Hong, Y.J.; Yoon, Y.M.; Choi, E.H.; Jang, M. Enhanced TOC removal from paper mill wastewater using air dielectric barrier discharge plasma with persulfate sources: Mechanistic insights and continuous flow operation performance evaluation. J. Hazard. Mater. 2025, 486, 136853. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.G.; Pei, X.Y.; Cheng, J.S.; Tian, D.; Yang, J.J.; Sang, L.J.; Chen, Q.; Liu, Z.W. An excellent defluorination rate of PFOA achieved by a DBD-peroxymonosulfate system. J. Water Process. Eng. 2025, 76, 108215. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wang, S.X.; Wang, Z.R.; Fu, Y.S.; Zhou, R.Y. FeCu-coal gangue heterogeneous activation of peracetic acid for degradation of sulfamethoxazole. J. Environ. Chem. Eng. 2023, 11, 110007. [Google Scholar] [CrossRef]
- Yao, K.Y.; Fang, L.; Liao, P.B.; Chen, H.S. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: Efficiency and mechanism. Sep. Purif. Technol. 2022, 306, 122635. [Google Scholar] [CrossRef]
- Zheng, B.Q.; Shi, H.H.; Wang, B.B.; Zhang, K.H.; Han, Y.R.; Wan, H.Y.; Zhang, W.; Wang, H.L.; Mao, L.; Gao, S.X.; et al. Development of electrocoagulation/peracetic acid system to degrade chloramphenicol: Mechanisms and removal efficiency. Chem. Eng. J. 2025, 507, 160461. [Google Scholar] [CrossRef]
- Wu, H.X.; Ye, W.; Shen, W.; Zhao, Q.F. Tetracycline degradation in the system of peracetic acid activation by liquid discharge plasma. Sep. Purif. Technol. 2024, 354, 128783. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, H.; He, J.L.; Luo, Y.X.; Miruka, A.C.; Zhang, A.; Liu, Y.N. Synergistic performance and mechanisms of plasma and peracetic acid for antibiotic degradation in water. Chem. Eng. J. 2024, 498, 155096. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.R.; Chen, M.; Sun, Q.Y.; Zhang, Y.; Zhou, J.; Wang, T.C. Radical adducts formation mechanism of CH3CO2· and CH3CO3· realized decomposition of chitosan by plasma catalyzed peracetic acid. Carbohydr. Polym. 2023, 318, 121121. [Google Scholar] [CrossRef]
- Su, Y.Y.; Yang, Y.X.; Jiang, W.X.; Han, J.G.; Guo, H. A novel strategy of peracetic acid activation by dielectric barrier discharge plasma for bisphenol a degradation: Feasibility, mechanism and active species dominant to degradation pathway. Chem. Eng. J. 2023, 476, 146469. [Google Scholar] [CrossRef]
- Ghimire, B.; Szili, E.J.; Patenall, B.L.; Fellows, A.; Mistry, D.; Jenkins, A.T.A.; Short, R.D. Cold Plasma Generation of Peracetic Acid for Antimicrobial Applications. Clin. Plasma Med. 2021, 11, 73–84. [Google Scholar] [CrossRef]
- Han, J.G.; Su, Y.Y.; Jiang, W.X.; Wang, Y.W.; Guo, H. Peracetic acid activation by DBD plasma and FeOOH-C3N4 for bisphenol A degradation: In-depth insight into activation energy and mechanism. Sep. Purif. Technol. 2025, 367, 132896. [Google Scholar] [CrossRef]
- Yang, Y.X.; Jiang, W.X.; Guo, H. Elimination of Chlorella using peracetic acid activated by dielectric barrier discharge plasma: Mechanism and cell deactivation process. Bioresour. Technol. 2024, 400, 130651. [Google Scholar] [CrossRef] [PubMed]
- Li, R.X.; Wang, J.Q.; Wu, H.; Zhu, Z.Y.; Guo, H.G. Periodate activation for degradation of organic contaminants: Processes, performance and mechanism. Sep. Purif. Technol. 2022, 292, 120928. [Google Scholar] [CrossRef]
- Choi, Y.; Yoon, H.; Lee, C.; Vetráková, L.; Heger, D.; Kim, K.; Kim, J. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants. Environ. Sci. Technol. 2018, 52, 5378–5385. [Google Scholar] [CrossRef] [PubMed]
- Song, T.H.; Gao, Y.J.; Yu, X.D.; Su, R.; Deng, Q.Y.; Wang, Z. Advances in photo-mediated advanced oxidation of periodate toward organics degradation. J. Water Process. Eng. 2024, 61, 105261. [Google Scholar] [CrossRef]
- Dai, J.; Chen, N.; Wang, Y.J.; Zha, X.H.; Wang, J.; Yang, Z.Y.; Fang, G.D. Reactive nitrogen species regulating sulfadiazine degradation by biochar-activated periodate with ammonium. Appl. Catal. B Environ. 2025, 382, 125979. [Google Scholar] [CrossRef]
- Puyang, C.D.; Han, J.G.; Guo, H. Degradation of emerging contaminants in water by a novel non-thermal plasma/periodate advanced oxidation process: Performance and mechanisms. Chem. Eng. J. 2024, 483, 149194. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Lee, U.; Oh, H.; Kim, H.; Lee, J. Removal of tetramethylammonium hydroxide (TMAH) by cold plasma treatment combined with periodate oxidation: Degradation, kinetics, and toxicity study. Chemosphere 2024, 362, 142704. [Google Scholar] [CrossRef]
- Jiang, W.X.; Wang, Y.W.; Puyang, C.D.; Tang, S.F.; Guo, H. Periodate activation by plasma coupled with Fesingle bondNsingle bondC for contaminant removal: Machine learning assisted catalyst optimization and electron shuttle mechanism. J. Colloid Interface Sci. 2025, 685, 975–987. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, J.P.; Luo, P.C.; Zhu, L.X.; Liu, Y.N. Degradation of Atrazine in Water by Dielectric Barrier Discharge Combined with Periodate Oxidation: Enhanced Performance, Degradation Pathways, and Toxicity Assessment. Toxics 2024, 12, 746. [Google Scholar] [CrossRef]
- Cao, Y.; Sheriff, T.S. Ultrasound-assisted bisphenol AF degradation using in situ generated hydrogen peroxide. J. Environ. Manag. 2024, 371, 123267. [Google Scholar] [CrossRef]
- Wang, S.D.; Zhang, X.D.; Chen, G.Z.; Liu, B.; Li, H.M.; Hu, J.H.; Fu, J.W. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. Chin. Chem. Lett. 2022, 33, 5208–5212. [Google Scholar] [CrossRef]
- Luo, K.; Yang, Q.; Pang, Y.; Wang, D.B.; Li, X.; Lei, M.; Huang, Q. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin. Chem. Eng. J. 2019, 394, 520–530. [Google Scholar] [CrossRef]
- Li, Z.G.; Zhang, Y.R.; Bi, W.L.; Liu, F.W. Degradation of ciprofloxacin by hydrogen peroxide activated with pyrite under simulated sunlight. J. Water Process. Eng. 2024, 68, 106389. [Google Scholar] [CrossRef]
- Dulova, N.; Kattel, E.; Trapido, M. Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition. Chem. Eng. J. 2017, 318, 254–263. [Google Scholar] [CrossRef]
- Hara, J. Oxidative degradation of benzene rings using iron sulfide activated by hydrogen peroxide/ozone. Chemosphere 2017, 189, 382–389. [Google Scholar] [CrossRef]
- Yu, L.; Ling, R.; Chen, J.P.; Reinhard, M. Quantitative assessment of the iron-catalyzed degradation of a polyamide nanofiltration membrane by hydrogen peroxide. J. Membr. Sci. 2019, 588, 117154. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C. Mechanisms of carbendazim degradation during direct ozonation and ozone/hydrogen peroxide processes. Process Saf. Environ. Prot. 2025, 200, 107348. [Google Scholar] [CrossRef]
- Yayci, A.; Baraibar, A.G.; Krewing, M.; Fueyo, E.F.; Hollmann, F.; Alcalde, M.; Kourist, R.; Bandow, J.E. Plasma-Driven in Situ Production of Hydrogen Peroxide for Biocatalysis. ChemSusChem 2020, 13, 2072–2079. [Google Scholar] [CrossRef]
- Wu, J.W.; Li, P.; Tao, D.B.; Zhao, H.T.; Sun, R.Y.; Ma, F.M.; Zhang, B.Q. Effect of solution plasma process with hydrogen peroxide on the degradation and antioxidant activity of polysaccharide from Auricularia auricula. Int. J. Biol. Macromol. 2018, 117, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, S.A.; Taghipour, F. Microplasma ultraviolet radiation integrated with electrochemical in situ generation of hydrogen peroxide for degradation of organic pollutants in water. J. Clean. Prod. 2021, 314, 127923. [Google Scholar] [CrossRef]
- Ma, F.M.; Wu, J.W.; Li, P.; Tao, D.B.; Zhao, H.T.; Zhang, B.Q.; Li, B. Effect of solution plasma process with hydrogen peroxide on the degradation of water-soluble polysaccharide from Auricularia auricula. II: Solution conformation and antioxidant activities in vitro. Carbohydr. Polym. 2018, 198, 575–580. [Google Scholar] [CrossRef]
- Crema, A.P.S.; Borges, L.D.P.; Micke, G.A.; Debacher, N.A. Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification. Chemosphere 2019, 244, 125502. [Google Scholar] [CrossRef]
- Fan, X.T.; Vinyard, B.T.; Song, Y.Y. Cold plasma-activated hydrogen peroxide aerosols inactivate Salmonella Typhimurium and Listeria innocua on smooth surfaces and stem scars of tomatoes: Modeling effects of hydrogen peroxide concentration, treatment time and dwell time. Food Control 2022, 141, 109153. [Google Scholar] [CrossRef]
- Lee, H.W.; Oh, Y.J.; Min, S.C. Microbial inhibition in mixed vegetables packaged in plastic containers using combined treatment with hydrogen peroxide and cold plasma. Food Control 2023, 161, 110107. [Google Scholar] [CrossRef]
- Boscariol, M.R.; Moreira, A.J.; Mansano, R.D.; Kikuchi, I.S.; Pinto, T.J.A. Sterilization by pure oxygen plasma and by oxygen–hydrogen peroxide plasma: An efficacy study. Int. J. Pharm. 2008, 353, 170–175. [Google Scholar] [CrossRef]
- Kim, Y.E.; Min, S.C. Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma. Food Control 2021, 130, 108392. [Google Scholar]
- Clematis, D.; Panizza, M. Electro-Fenton, solar photoelectro-Fenton and UVA photoelectro-Fenton: Degradation of Erythrosine B dye solution. Chemosphere 2020, 270, 129480. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.S.; Zhou, P.; Yang, Y.Y.; Hall, T.; Nie, G.; Yao, Y.; Duan, X.G.; Wang, S.B. Degradation of Microplastics by a Thermal Fenton Reaction. ACS ES T Eng. 2021, 2, 110–120. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, N.; Pan, Y.W.; Fu, L.C.; Zhang, Y. The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chin. Chem. Lett. 2024, 35, 109579. [Google Scholar] [CrossRef]
- Crispim, A.C.; Araújo, D.M.D.; Martínez-Huitle, C.A.; Souza, F.L.; Santos, E.V.D. Application of electro-Fenton and photoelectro-Fenton processes for the degradation of contaminants in landfill leachate. Environ. Res. 2022, 213, 113552. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhou, Y.Y.; Zhang, J.C.; Luo, L.; Yang, Y.; Huang, H.L.; Peng, H.; Tang, L.; Mu, Y. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chem. Eng. J. 2018, 347, 379–397. [Google Scholar] [CrossRef]
- Fang, J.F.; Liu, L.; Yang, H.; Du, H.Y. Applications of Fenton/Fenton-like photocatalytic degradation in g-C3N4 based composite materials. J. Environ. Chem. Eng. 2024, 12, 114153. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, Y.Y.; Tang, X.X.; Xu, Y.; Li, C.C.; Li, F. Synthesis of Ag/AgCl/Fe-S plasmonic catalyst for bisphenol A degradation in heterogeneous photo-Fenton system under visible light irradiation. Chin. J. Catal. 2017, 38, 1726–1735. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Nguyen, M.D.; Nguyen, T.H.; Gao, M.; Kaushik, N.; Vasilyevich, O.V.; Petrovna, A.A.; Andreevich, O.N.; Kaushik, N.K.; Nguyen, T.T.; et al. Microwave-assisted synthesis of copper ferrite nanocatalysts for synergistic plasma-Fenton degradation of Rhodamine B. Colloids Surf. A 2024, 705, 135681. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mahyar, A.; Miessner, H.; Mueller, S.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation, Fenton, photocatalysis and non-thermal plasma: A comparative study. Process Saf. Environ. Prot. 2018, 113, 319–329. [Google Scholar] [CrossRef]
- Tao, X.M.; Yuan, X.J.; Huang, L. Effects of Fe(II)/Fe(III) of Fe-MOFs on catalytic performance in plasma/Fenton-like system. Colloids Surf. A 2021, 610, 125745. [Google Scholar] [CrossRef]
- Grbić, J.; Mladenović, D.; Pavlović, S.; Lazović, S.; Mojović, L.; Djukić-Vuković, A. Advanced oxidation processes in the treatment of corn stalks. Sustain. Chem. Pharm. 2023, 32, 100962. [Google Scholar] [CrossRef]
- Kavian, N.; Asadollahfardi, G.; Hasanbeigi, A.; Delnavaz, M.; Samadi, A. Degradation of phenol in wastewater through an integrated dielectric barrier discharge and Fenton/photo-Fenton process. Ecotoxicol. Environ. Saf. 2024, 271, 115937. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.W.; Li, H.; Wang, R.G.; Zhou, J.; Zhang, Y.; Qu, G.Z.; Wang, T.C.; Jia, H.Z. Multiprocess catalyzed Cu-EDTA decomplexation by non-thermal plasma coupled with Fe/C microelectrolysis: Reaction process and mechanisms. Sep. Purif. Technol. 2022, 280, 119831. [Google Scholar] [CrossRef]
- Kim, S.H.; Seo, J.; Hong, Y.; Shin, Y.; Chung, H.; An, H.; Kim, C.; Park, J.; Lee, H.U. Construction of an underwater plasma and Fenton hybrid system for the rapid oxidation of organic dyes and antibiotics. J. Water Process. Eng. 2023, 52, 103519. [Google Scholar] [CrossRef]
- Meng, F.Y.; Lin, C.B.; Song, B.; Yu, L.; Zhao, Y.; Zhi, Z.J.; Song, M. Synergistic effect of underwater arc discharge plasma and Fe2O3-CoFe2O4 enhanced PMS activation to efficiently degrade refractory organic pollutants. Sep. Purif. Technol. 2022, 290, 120834. [Google Scholar] [CrossRef]
- Zhao, Y.; Oliveira, M.; Burgess, C.M.; Cropotova, J.; Rustad, T.; Sun, D.; Tiwari, B.K. Combined effects of ultrasound, plasma-activated water, and peracetic acid on decontamination of mackerel fillets. Lebensm.-Wiss. Technol. 2021, 150, 111957. [Google Scholar] [CrossRef]
- Cheng, J.H.; Ai, X.; Ma, J.; Sun, D.W. Effects of cold plasma pretreatment combined with sodium periodate on property enhancement of dialdehyde starch prepared using native maize starch. Int. J. Biol. Macromol. 2024, 267, 131435. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.Z.; Liu, Y.J. Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions. J. Hazard. Mater. 2007, 154, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Pan, S.J.; Hu, Z.X.; Wang, Y.W.; Jiang, W.X.; Yang, Y.X.; Wang, Y.C.; Han, J.G.; Wu, Y.F.; Wang, T.C. Persulfate activated by non-thermal plasma for organic pollutants degradation: A review. Chem. Eng. J. 2023, 470, 144094. [Google Scholar] [CrossRef]
- Liang, J.P.; Zhou, X.F.; Zhao, Z.L.; Yang, D.Z.; Wang, W.C. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma. J. Environ. Manag. 2020, 278, 111539. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, G.Z.; Sun, Q.H.; Jia, H.Z.; Wang, T.C.; Zhu, L.Y. Endogenously activated persulfate by non-thermal plasma for Cu(II)-EDTA decomplexation: Synergistic effect and mechanisms. Chem. Eng. J. 2020, 406, 126774. [Google Scholar] [CrossRef]
- Huang, J.W.; Puyang, C.D.; Wang, Y.W.; Zhang, J.W.; Guo, H. Hydroxylamine activated by discharge plasma for synergetic degradation of tetracycline in water: Insight into performance and mechanism. Sep. Purif. Technol. 2022, 300, 121913. [Google Scholar] [CrossRef]
- Shang, K.F.; Wang, X.J.; Li, J.; Wang, H.; Lu, N.; Jiang, N.; Wu, Y. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chem. Eng. J. 2016, 331, 378–384. [Google Scholar] [CrossRef]
- Moradi, H.; Kim, D.; Yang, J.; Chang, Y.Y.; Park, S.; Kamranifard, T. Synergy of cold plasma and sulfate radicals in the treatment of dye-contaminated wastewater; mechanistic study of the degradation mechanism using DFT. Sep. Purif. Technol. 2024, 323, 124381. [Google Scholar] [CrossRef]
- Moradi, H.; Kim, D.; Yang, J.; Chang, Y.Y.; Kamranifard, T. Mechanistic study on the synergy of cold plasma and sulfate radical in the degradation of azo and triarylmethane dyes using density functional theory. J. Environ. Chem. Eng. 2023, 11, 110559. [Google Scholar] [CrossRef]
- Sarangapani, C.; Misra, N.N.; Milosavljevic, V.; Bourke, P.; O’Regan, F.; Cullen, P.J. Pesticide degradation in water using atmospheric air cold plasma. J. Water Process. Eng. 2016, 9, 225–232. [Google Scholar] [CrossRef]
- Júnior, F.E.R.; Fernandes, F.A.N. Degradation of diazinon by dielectric barrier discharge plasma. J. Environ. Chem. Eng. 2023, 12, 111539. [Google Scholar] [CrossRef]
- Tang, S.F.; Yuan, D.L.; Li, N.; Qi, J.B.; Gu, J.M.; Huang, H.M. Hydrogen peroxide generation during regeneration of granular activated carbon by bipolar pulse dielectric barrier discharge plasma. J. Taiwan Inst. Chem. Eng. 2017, 78, 178–184. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, X.L.; Xia, G.Q.; Zhang, Y.H.; Di, L.B. Cold plasma for preparation of Pd/C catalysts toward formic acid dehydrogenation: Insight into plasma working gas. J. Catal. 2021, 400, 338–346. [Google Scholar] [CrossRef]
- Abbas, Y.; Lu, W.J.; Dai, H.X.; Fu, X.D.; Ye, R.; Wang, H.T. Remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil with double dielectric barrier discharge plasma technology: Influencing parameters. Chem. Eng. J. 2020, 394, 124858. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, J.W.; Liu, Q.; Wu, Z.W. High-efficiency water purification with plasma-activated persulfate for sustainable long-term agricultural recycling. J. Water Process. Eng. 2024, 68, 106541. [Google Scholar] [CrossRef]
- Tang, S.F.; Yuan, D.L.; Rao, Y.D.; Li, N.; Qi, J.B.; Cheng, T.Z.; Sun, Z.T.; Gu, J.M. Haiming Huang. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water. Chem. Eng. J. 2017, 337, 446–454. [Google Scholar] [CrossRef]
- Lou, J.; Lu, G.L.; Wei, Y.; Zhang, Y.; An, J.T.; Jia, M.K.; Li, M.H. Enhanced degradation of residual potassium ethyl xanthate in mineral separation wastewater by dielectric barrier discharge plasma and peroxymonosulfate. Sep. Purif. Technol. 2021, 282, 119955. [Google Scholar] [CrossRef]
- Lou, J.; An, J.T.; Wang, X.Y.; Cheng, M.; Cui, Y.J. A novel DBD/VUV/PMS process for efficient sulfadiazine degradation in wastewater: Singlet oxygen-dominated nonradical oxidation. J. Hazard. Mater. 2023, 461, 132650. [Google Scholar] [CrossRef]
- Zhou, G.F.; Liu, Y.Q.; Zhou, R.Y.; Zhang, L.; Fu, Y.S. Bimetallic metal-organic framework as a high-performance peracetic acid activator for sulfamethoxazole degradation. Chemosphere 2023, 349, 140958. [Google Scholar] [CrossRef]
- Kim, J.; Kim, U.; Lee, S. Decomplexation of cu(II)-EDTA by liquid-phase plasma: Enhanced performance by inducing self-catalytic Fenton reaction. J. Water Process. Eng. 2025, 71, 107356. [Google Scholar] [CrossRef]
- Liu, S.; Kang, Y. Underwater bubbling plasma assisted with persulfate activation for the synergistic degradation of tetracycline hydrochloride. Environ. Res. 2023, 240, 117539. [Google Scholar] [CrossRef] [PubMed]
- Maehara, T.; Nishiyama, K.; Onishi, S.; Mukasa, S.; Toyota, H.; Kuramoto, M.; Nomura, S.; Kawashima, A. Degradation of methylene blue by radio frequency plasmas in water under ultraviolet irradiation. J. Hazard. Mater. 2009, 174, 473–476. [Google Scholar] [CrossRef]
- Li, Z.D.; Jiang, W.X.; Li, Y.F.; Zhu, D.H.; Guo, H. Enhanced degradation of sulfamethoxazole in water using non-thermal plasma-activated persulfate: Effects of heat and radical synergies. J. Environ. Chem. Eng. 2025, 13, 115416. [Google Scholar] [CrossRef]
- Crema, A.P.S.; Müller, D.; Horn, A., Jr.; Debacher, N.A. Plasma catalysis. A study of the influence of oxysulfur, SOx• species through the degradation of sulfonated dyes by non-thermal plasma. Chemosphere 2024, 359, 142230. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Vasilev, M.; Sreekrishnan, T.R.; Holsen, T.; Thagard, S.M. Enhancing pharmaceutical compound degradation using a bubble column plasma reactor: Efficacy and plasmochemical mechanisms. Chem. Eng. J. 2025, 524, 169078. [Google Scholar] [CrossRef]
- Abdelmalek, F.; Gharbi, S.; Benstaali, B.; Addou, A.; Brisset, J.L. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste. Water Res. 2004, 38, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shin, Y.; Kim, K.; Kim, H.; Kang, J.; Yoo, J.; Kang, S.U.; Yoo, Y.; Hong, Y.C. Degradation of trace pollutants in industrial wastewater using underwater nonthermal plasma: Toward evaluation of bioecotoxicity. Chem. Eng. J. 2024, 492, 152057. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Yang, S.; Guo, H. Plasma-Activated Homogeneous Catalysis for Water Decontamination: Mechanisms, Synergies, and Future Perspectives. Catalysts 2025, 15, 1138. https://doi.org/10.3390/catal15121138
Xiang L, Yang S, Guo H. Plasma-Activated Homogeneous Catalysis for Water Decontamination: Mechanisms, Synergies, and Future Perspectives. Catalysts. 2025; 15(12):1138. https://doi.org/10.3390/catal15121138
Chicago/Turabian StyleXiang, Liangrui, Shuang Yang, and He Guo. 2025. "Plasma-Activated Homogeneous Catalysis for Water Decontamination: Mechanisms, Synergies, and Future Perspectives" Catalysts 15, no. 12: 1138. https://doi.org/10.3390/catal15121138
APA StyleXiang, L., Yang, S., & Guo, H. (2025). Plasma-Activated Homogeneous Catalysis for Water Decontamination: Mechanisms, Synergies, and Future Perspectives. Catalysts, 15(12), 1138. https://doi.org/10.3390/catal15121138

