Nitrogen-Doped Carbon Coated Zn0.17Co0.83P as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals and Materials
3.2. CoxZn1−x(2-MeIM)2 Synthesis
3.3. CoxZn1−x@NC Synthesis
3.4. CoxZn1−xP@NC Synthesis
3.5. CoP@NC Synthesis
3.6. Material Characterization
3.7. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Deng, C.; Xia, R.; Zhao, P.; Li, N.; Zhu, S.; Zhu, W.; Zhang, H.; Shen, D.; Lin, R. Biomimetic Engineering of Interfacial Hydrogen-Bond Network to Boost Proton Transfer for High-Performance Alkaline Water Electrolysis. Adv. Energy Mater. 2025, 15, e03403. [Google Scholar] [CrossRef]
- Zhong, X.; Hou, C.; Chen, Y.; Zhang, Z.; Li, Y.; Gan, T.; Liu, K.; Gao, Q.; Liu, B.; Huang, Y.; et al. Unraveling the Contrasting Dynamics of Reconstruction in Wolframite Cobalt Molybdate Polymorphs for Oxygen Evolution Reaction Electrocatalysis. ACS Catal. 2025, 15, 11958–11969. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, K.; Liu, X.; Liu, P.; Lv, X.; Tian, W.; Ji, J. Promoted OH− Adsorption and Cl− Repulsion Ability of Ce-Decorated NiFe@CuO for Alkaline Seawater Electrolysis. Adv. Funct. Mater. 2025, 2508539. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Guan, P.; Ye, Q.; Zhao, Y.; Cheng, Y. Room-temperature synthesis of NiFe-hexamethylenetetramine as lattice oxygen involved electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2025, 690, 137287. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, H.; Guo, G.; Wang, Y.; Tan, W.; Ma, F.; Zhang, H.; Peng, S. Pd Single Atoms/Clusters at the Oxygen Defect-Rich WOx_C Nanowire Structure Facilitate H* Adsorption and Desorption for Efficient and Stable Hydrogen Evolution Reaction. ACS Catal. 2025, 15, 9563–9573. [Google Scholar] [CrossRef]
- Zhu, A.; Qiao, L.; Liu, K.; Gan, G.; Luan, C.; Lin, D.; Zhou, Y.; Bu, S.; Zhang, T.; Liu, K.; et al. Rational design of precatalysts and controlled evolution of catalyst-electrolyte interface for efficient hydrogen production. Nat. Commun. 2025, 16, 1880. [Google Scholar] [CrossRef]
- Xue, L.; Wang, B.; Hu, J.; Hou, C.; Chen, C.; Zhu, Z.; Lv, X.; Dang, J. Dynamic Self-Optimizing Reconstruction of Stainless Steel Fe-Ni Dual Sites Accelerates Catalytic Intermediate Coupling for High-Efficiency Oxygen Evolution Reaction at Industrial Current Density. Adv. Funct. Mater. 2025, e16748. [Google Scholar] [CrossRef]
- Xia, L.; Gomes, B.F.; Jiang, W.; Escalera-López, D.; Wang, Y.; Hu, Y.; Faid, A.Y.; Wang, K.; Chen, T.; Zhao, K.; et al. Operando-informed precatalyst programming towards reliable high-current-density electrolysis. Nat. Mater. 2025, 24, 753–761. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, W.; Shang, L.; Zhao, Y.; Xiong, X.; Sun, J.; Zhang, T.; Yuan, J. Facilitating alkaline hydrogen evolution kinetics via interfacial modulation of hydrogen-bond networks by porous amine cages. Nat. Commun. 2025, 16, 1849. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Liu, M.; Wang, H.-Y.; Zhang, X.; Li, Z.-G.; Li, W.; Li, N.; Bu, X.-H. Interfacial Ni–O–Ru Bridges Manipulate d-Band Center of Dual-Metal Site Catalysts for Efficient Water Splitting. ACS Catal. 2025, 15, 11082–11092. [Google Scholar] [CrossRef]
- Zhang, H.; Li, N.; Gao, S.; Chen, A.; Qian, Q.; Kong, Q.; Xia, B.Y.; Hu, G. Quenching-induced atom-stepped bimetallic sulfide heterointerface catalysts for industrial hydrogen generation. eScience 2025, 5, 100311. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, T.; Huang, D.; Lin, Y.; Yang, Z.; Yang, R.; Liu, Y.; Ai, X.; Fang, J.; Li, Y.; et al. Reversible Structural Oscillation Mediates Stable Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2025, 64, e202509915. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Wang, B.; Meng, X.; Dong, B.; Hojamberdiev, M.; Pan, Y.; Sun, G.; Zhang, H.; Jianrong, Z.; et al. Ultrafast reconstruction of Ni-based alloy precatalyst for bobust seawater oxidation. Adv. Funct. Mater. 2025, 35, 2509590. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Wang, X.; Di, Y.; Müllen, K.; Zhang, Z.; Wang, F. Rare-Earth Oxychlorides as Promoters of Ruthenium Toward High-Performance Hydrogen Evolution Electrocatalysts for Alkaline Electrolyzers. Adv. Mater. 2025, 37, 2417621. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Z.; Wang, Z.; Hu, M.; Cheng, D.; Jiang, Y.; Ren, H.; Shen, F.; Yang, S.; Yang, X.; et al. Breaking the H2O dissociation-OH desorption scaling relationship in alkaline hydrogen evolution by oxophilic single atom M1–Run electrocatalysts. Energy Environ. Sci. 2025, 18, 4302–4311. [Google Scholar] [CrossRef]
- Nickel, C.; Troglauer, D.L.; Dallos, Z.; Abid, D.; Sowa, K.; Cichocka, M.O.; Kolb, U.; Mashtakov, B.; Mohazzab, B.F.; Han, S.; et al. Self-optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media. Angew. Chem. Int. Ed. 2025, 64, e202424074. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.-J.; Su, P.-j.; Gao, Z.-Y.; Li, X.; Wang, Y.-H.; Zhao, L.-M.; Chai, Y.-M.; Dong, B. Highly active FeNbO4/NiFeOOH heterojunction induced by coordination activation for efficient and stable industrial water oxidation. J. Colloid Interface Sci. 2025, 688, 67–78. [Google Scholar] [CrossRef]
- Ma, P.; Xue, J.; Li, J.; Cao, H.; Wang, R.; Zuo, M.; Zhang, Z.; Bao, J. Site-specific synergy in heterogeneous single atoms for efficient oxygen evolution. Nat. Commun. 2025, 16, 2573. [Google Scholar] [CrossRef]
- Li, W.; Ni, Z.; Akdim, O.; Liu, T.; Zhu, B.; Kuang, P.; Yu, J. Dual Active Site Engineering in Porous NiW Bimetallic Alloys for Enhanced Alkaline Hydrogen Evolution Reaction. Adv. Mater. 2025, 37, 2503742. [Google Scholar] [CrossRef]
- Dong, A.; Lin, G.; Li, Z.; Wu, W.; Cao, X.; Li, W.; Wang, L.; Zhao, Y.; Chen, D.; Sun, L. Interlayer-bonded Ni/MoO2 electrocatalyst for efficient hydrogen evolution reaction with stability over 6000 h at 1000 mA cm−2. Nat. Commun. 2025, 16, 4955. [Google Scholar] [CrossRef]
- Zha, D.; Wang, R.; Tian, S.; Jiang, Z.-J.; Xu, Z.; Qin, C.; Tian, X.; Jiang, Z. Defect engineering and carbon supporting to achieve Ni-doped CoP3 with high catalytic activities for overall water splitting. Nano-Micro Lett. 2024, 16, 250. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, L.; Li, Z.; Nie, G.; Cao, X.; Fang, Z.; Wang, X.; Ramakrishna, S.; Long, Y.; Jiao, L. Regulating Hydrogen/Oxygen Species Adsorption via Built-in Electric Field -Driven Electron Transfer Behavior at the Heterointerface for Efficient Water Splitting. Angew. Chem. Int. Ed. 2024, 63, e202400888. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, W.; Shi, J.X.; Lei, J.L.; Xiao, Q.; Luo, H.Q.; Li, N.B. Dynamic Molybdate Oxyanion Boosts Self-Optimization and Self-Healing on the NiMoFe Heterostructure for Water Splitting in Alkaline Media. ACS Catal. 2024, 14, 18003–18017. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, R.-Q.; Chen, L.-B.; Dai, T.-Y.; Sun, X.-Y.; Zeng, S.-P.; Zhou, Z.-L.; Wang, Y.; Han, G.-F.; Wang, T.-H.; et al. Phase-Reconstruction of S-Doped (NiCo)6W6C for Efficient and Stable Oxygen Evolution Reaction Electrocatalysis. Nano Lett. 2025, 25, 13866–13874. [Google Scholar] [CrossRef]
- Ahmed, M.G.; Tay, Y.F.; Chi, X.; Razeen, A.S.; Fang, Y.; Zhang, M.; Sng, A.; Chiam, S.Y.; Rusydi, A.; Wong, L.H. Cation Migration-Induced Lattice Oxygen Oxidation in Spinel Oxide for Superior Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2024, 64, e202416757. [Google Scholar] [CrossRef]
- Zeng, S.-P.; Shi, H.; Dai, T.-Y.; Liu, Y.; Wen, Z.; Han, G.-F.; Wang, T.-H.; Zhang, W.; Lang, X.-Y.; Zheng, W.-T.; et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat. Commun. 2023, 14, 1811. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Y.; Xu, Z.; Liu, R. CeO2-Accelerated Surface Reconstruction of CoSe2 Nanoneedle Forms Active CeO2@CoOOH Interface to Boost Oxygen Evolution Reaction for Water Splitting. Adv. Energy Mater. 2024, 15, 2403744. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, C.; Xiao, L.; Han, C.; Zhao, X.; Yin, P.; Dong, C.; Liu, H.; Du, X.; Yang, J. Construction of Co–Se–W at Interfaces of Phase-Mixed Cobalt Selenide via Spontaneous Phase Transition for Platinum-Like Hydrogen Evolution Activity and Long-Term Durability in Alkaline and Acidic Media. Adv. Mater. 2024, 36, 2401880. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Y.; Wu, Y.; Li, Y.; Yang, C.; Ban, L.; Zhao, Y.; Dai, B.; Wang, G.; Li, Y.; et al. A plasma-triggered N–Co–O–Fe motif in Co(OH)2 for efficient electrocatalytic oxygen evolution. EES Catal. 2025, 3, 407–419. [Google Scholar] [CrossRef]
- Li, C.; Ye, B.; Ouyang, B.; Zhang, T.; Tang, T.; Qiu, Z.; Li, S.; Li, Y.; Chen, R.; Wen, W.; et al. Dual Doping of N and F on Co3O4 to Activate the Lattice Oxygen for Efficient and Robust Oxygen Evolution Reaction. Adv. Mater. 2025, 37, 2501381. [Google Scholar] [CrossRef]
- Qu, M.-R.; Cheng, Y.-X.; Feng, S.-H.; Xu, J.; Yao, J.-K.; Yan, W.-S.; Zhu, S.; Cao, L.; Wu, R.; Yu, S.-H. Ordered interfacial domain expansion catalysis enhances hydrogen evolution for proton exchange membrane electrolysis. Energy Environ. Sci. 2025, 18, 5985–5997. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, H.; Feng, Y.; Du, X.; Xie, Z.; Zhou, J.; Liu, Y.; Song, Y.; Wang, F.; et al. Electroreduction-driven distorted nanotwins activate pure Cu for efficient hydrogen evolution. Nat. Mater. 2025, 24, 424–432. [Google Scholar] [CrossRef]
- Chen, W.; Xu, C.; Yu, H.; Huang, H.; Li, S.; Cao, Y.; Peng, W.; Li, Y.; Ke, H.; Xu, S.; et al. Hydroxyl Spillover Activated from the Strongly Coupled Ru@Mn3O4 Heterostructure to Promote Alkaline Hydrogen Evolution. Angew. Chem. Int. Ed. 2025, 64, e202504667. [Google Scholar] [CrossRef]
- Yue, J.; Li, Y.; Yang, C.; Luo, W. Hydroxyl-Binding Induced Hydrogen Bond Network Connectivity on Ru-based Catalysts for Efficient Alkaline Hydrogen Oxidation Electrocatalysis. Angew. Chem. Int. Ed. 2024, 64, e202415447. [Google Scholar] [CrossRef]
- Poudel, M.B.; Yu, C.; Kim, H.J. Synthesis of Conducting Bifunctional Polyaniline@Mn-TiO2 Nanocomposites for Supercapacitor Electrode and Visible Light Driven Photocatalysis. Catalysts 2020, 10, 546. [Google Scholar] [CrossRef]
- Perumal, S.; Chandra Kishore, S.; Atchudan, R.; Sundramoorthy, A.K.; Alagan, M.; Lee, Y.R. Sustainable Synthesis of N/S-Doped Porous Carbon from Waste-Biomass as Electroactive Material for Energy Harvesting. Catalysts 2022, 12, 436. [Google Scholar] [CrossRef]
- Yu, T.; Gao, P.; Du, H.; Dong, L. Promoting electrocatalytic water oxidation via crafting Co–O–W bridge bonds on an amorphous core/shell NiCo-ZIF@POM catalyst. Inorg. Chem. Front. 2024, 11, 6661–6670. [Google Scholar] [CrossRef]
- Yao, B.; Chen, Y.; Yan, Y.; Yang, Y.; Xing, H.; Xu, Y.; Jiao, D.; Xing, Z.; Wang, D.; Yang, X. Iron-Induced Localized Oxide Path Mechanism Enables Efficient and Stable Water Oxidation. Angew. Chem. Int. Ed. 2024, 64, e202416141. [Google Scholar] [CrossRef]
- Mei, Y.; Chen, J.; Wang, Q.; Guo, Y.; Liu, H.; Shi, W.; Lin, C.; Yuan, Y.; Wang, Y.; Xia, B.; et al. MoZn-based high entropy alloy catalysts enabled dual activation and stabilization in alkaline oxygen evolution. Sci. Adv. 2024, 10, eadq6758. [Google Scholar] [CrossRef]
- Wang, S.; Lv, H.; Bi, S.; Li, T.; Sun, Y.; Ji, W.; Feng, C.; Zhang, C. Defects tailoring IrO2@TiN1+x nano-heterojunctions for superior water oxidation activity and stability. Mater. Chem. Front. 2021, 5, 8047–8055. [Google Scholar] [CrossRef]
- Chen, H.; Yu, J.; Liu, L.; Gao, R.T.; Gao, Z.; Yang, Y.; Chen, Z.; Zhan, S.; Liu, X.; Zhang, X.; et al. Modulating Pt-N/O Bonds on Co-doped WO3 for Acid Electrocatalytic Hydrogen Evolution with Over 2000 h Operation. Adv. Energy Mater. 2024, 14, 2303635. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, G.R.; Sun, T.; Li, J.; Miao, Y.; Wu, Z.; Zhang, Y.; Wang, L. Electron-Rich Ru Atoms in Loaded Ru4Fe Intermetallic Compounds/C Modulate the Kinetics of Neutral Hydrogen Evolution. Adv. Funct. Mater. 2025, 35, 2501508. [Google Scholar] [CrossRef]
- Wang, L.-L.; Wang, X.-R.; Wang, H.-J.; Zhang, C.; Li, J.-J.; Feng, G.-J.; Cheng, X.-X.; Qin, X.-R.; Yu, Z.-Y.; Lu, T.-B. Tailoring Lewis Acidity of Metal Oxides on Nickel to Boost Electrocatalytic Hydrogen Evolution in Neutral Electrolyte. J. Am. Chem. Soc. 2025, 147, 7555–7563. [Google Scholar] [CrossRef]
- Wan, L.; Wang, H.; Zeng, B.; Wang, W.; Liu, X.; Hu, Y.; Cao, L.; Cui, Z.; Dong, B. Surface-confined Growth of Ru Amorphous Sub-nanoclusters on Reductive Mn3O4: A Strongly Coupled Interface Engineering for Efficient Neutral Hydrogen Production. Energy Environ. Sci. 2025, 18, 4262–4275. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Zhu, L.; Yu, H.; Duan, B.; Wang, R.; Zhang, Z.; Qiu, S. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon 2019, 146, 671–679. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Chen, Z.; Feng, F.; Teng, K.; Zhang, S.; Zhuang, J.; An, Q. Synergistic promotion of HER and OER by alloying ternary Zn-Co-Ni nanoparticles in N-doped carbon interfacial structures. Chin. J. Catal. 2022, 43, 1316–1323. [Google Scholar] [CrossRef]
- Belhadj, H.; Messaoudi, Y.; Khelladi, M.R.; Azizi, A. A facile synthesis of metal ferrites (MFe2O4, M = Co, Ni, Zn, Cu) as effective electrocatalysts toward electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 20129–20137. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Y.; Feng, L.; He, D.; Liu, Q.; Gong, Y.; Li, G.; Huang, J. A three-dimensional coral-like Zn,O-codoped Ni3S2 electrocatalyst for efficient overall water splitting at a large current density. Sustain. Energy Fuels 2022, 6, 466–473. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Mezni, A.; Alsawat, M.; Kumeria, T.; Alrooqi, A.; Shaltout, A.A.; Ahmed, S.I.; Boukherroub, R.; Amin, M.A.; Altalhi, T. Crystalline ZnO and ZnO/TiO2 nanoparticles derived from tert-butyl N-(2 mercaptoethyl)carbamatozinc(II) chelate: Electrocatalytic studies for H2 generation in alkaline electrolytes. Int. J. Energy Res. 2020, 44, 6725–6744. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Q.; Sun, P.; Nie, R.; Wang, X. Tuning the active sites in the cobalt-based nitrogen-doped carbon by zinc for enhancing hydrogen evolution reaction. J. Alloys Compd. 2019, 789, 100–107. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Bao, J.; Wang, J.; Zhang, Y.; Sheng, X.; Xue, Y.; Guo, C.; Chen, X. Co-CoO/ZnFe2O4 encapsulated in carbon nanowires derived from MOFs as electrocatalysts for hydrogen evolution. J. Colloid Interface Sci. 2020, 561, 620–628. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.-C.; Zhao, F.-H.; Zhu, K.; Li, J.; Kan, W.-Q.; Jing, Z.; You, J. Synthesis, structure, fluorescence and electrochemical properties of a new Zn(ii)–organic framework constructed by a tricarboxylic acid ligand. New J. Chem. 2019, 43, 13635–13641. [Google Scholar] [CrossRef]
- Dong, B.; Xie, J.-Y.; Wang, N.; Gao, W.-K.; Ma, Y.; Chen, T.-S.; Yan, X.-T.; Li, Q.-Z.; Zhou, Y.-L.; Chai, Y.-M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energy 2020, 157, 415–423. [Google Scholar] [CrossRef]
- Amin, M.A.; Ibrahim, M.M.; Gobouri, A.A.; Mersal, G.A.M.; Mostafa, N.Y.; Altalhi, T.; Al-Juaid, S. A newly synthesized single crystal zinc complex as molecular electrocatalyst for efficient hydrogen generation from neutral aqueous solutions. Int. J. Hydrogen Energy 2017, 42, 25980–25995. [Google Scholar] [CrossRef]
- Shi, W.; Liu, H.; Zhang, J.; Shen, S.; Wang, Y.; Guo, Y.; Yue, K.; Liang, Z.; Zhang, H.; Zhang, L.; et al. Roll-to-roll synthesis of multielement heterostructured catalysts. Nat. Synth. 2025, 4, 36–847. [Google Scholar] [CrossRef]







| Electrocatalysts | Electrolyte |
Tafel
(mV dec−1) |
Current Density
(mA cm−2) | Overpotential (mV) | Ref. |
|---|---|---|---|---|---|
| Co-NC | 1 M KOH | 101 | 10 | 242 | [45] |
| ZnCo/(Ppy/CNTs)4 | 1 M PBS | 215.5 | 10 | 229 | [46] |
| CoFe2O4 | 1 M KOH | 98 | 10 | 270 | [47] |
| ZO-Ni3S2/NF | 1 M KOH | - | 10 | 235 | [48] |
| GC- (ZnO/TiO2) | 1 M NaOH | 122 | 10 | 190 | [49] |
| GC-ZnO | 1 M NaOH | 130 | 10 | 310 | [49] |
| ZnCo-11-NC | 1 M KOH | 86 | 10 | 200 | [50] |
| Co-CoO/ZnFe2O4 | 1 M KOH | 138 | 10 | 226 | [51] |
| R-C@800 | 1 M KOH | 191 | 19 | 395 | [52] |
| Zn-Co9S8@CF-(1-1) | 1 M KOH | 114.4 | 10 | 278 | [53] |
| Zinc(II) complex | 1 M PBS | 140 | 10 | 240 | [54] |
| Pt/C | 1 M KOH | 30.8 | 10 | 24 | [55] |
| Zn0.17Co0.83P@NC | 1 M KOH | 106.7 | 10 | 237.60 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.-P.; Men, X.-M.; Guo, S.-J.; Xu, N.; Dong, B. Nitrogen-Doped Carbon Coated Zn0.17Co0.83P as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution. Catalysts 2025, 15, 1071. https://doi.org/10.3390/catal15111071
Shen G-P, Men X-M, Guo S-J, Xu N, Dong B. Nitrogen-Doped Carbon Coated Zn0.17Co0.83P as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution. Catalysts. 2025; 15(11):1071. https://doi.org/10.3390/catal15111071
Chicago/Turabian StyleShen, Guo-Ping, Xiao-Mei Men, Si-Jia Guo, Na Xu, and Bin Dong. 2025. "Nitrogen-Doped Carbon Coated Zn0.17Co0.83P as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution" Catalysts 15, no. 11: 1071. https://doi.org/10.3390/catal15111071
APA StyleShen, G.-P., Men, X.-M., Guo, S.-J., Xu, N., & Dong, B. (2025). Nitrogen-Doped Carbon Coated Zn0.17Co0.83P as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution. Catalysts, 15(11), 1071. https://doi.org/10.3390/catal15111071

