Synthesis of MOF-Derived Mono-, Bi- and Trimetallic Fe, Zn and Cu Oxides for Microwave-Assisted Benzyl Alcohol Oxidation
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization Results
2.1.1. N2 Physisorption
2.1.2. X-Ray Diffraction
2.1.3. FTIR-ATR
2.1.4. HR-TEM
2.1.5. STEM-EDX
2.2. Catalytic Results
2.2.1. Comparation Between MOFs and Derived Metallic Oxides
2.2.2. Study of the Effect of Temperature on Conversion and Product Selectivity
2.2.3. Study of the Effect of Reaction Time on Conversion and Product Selectivity
2.2.4. Recyclability Study
3. Materials and Methods
3.1. Materials
3.2. Catalyst Synthesis: MOFs Synthesis
3.3. Metal Oxide Synthesis
3.4. Catalyst Characterization
3.4.1. N2 Adsorption-Desorption Porosimetry
3.4.2. X-Ray Diffraction (XRD)
3.4.3. FTIR-ATR Spectroscopy
3.4.4. Transmission Electron Microscopy (HR-TEM and STEM)
3.5. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BA | Benzyl alcohol | 
| DMF | Dimetilformamide | 
| TBHP | Tert butyl isopropoxide | 
Appendix A

References
- Perea-Moreno, M.-A.; Samerón-Manzano, E.; Perea-Moreno, A.-J. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef]
 - Zhang, J.; Gu, J.; Shan, R.; Yuan, H.; Chen, Y. Advances in Thermochemical Valorization of Biomass towards Carbon Neutrality. Resour. Conserv. Recycl. 2025, 212, 107905. [Google Scholar] [CrossRef]
 - Ronda-Leal, M.; Lázaro, N.; Pineda, A.; Romero, A.A.; Luque, R. Selective Catalytic Conversion of Gamma-Valerolactone to Isopropyl Valerate Using MOF-Derived Pd-ZrO2@C Materials. Sustain. Chem. Pharm. 2024, 38, 101467. [Google Scholar] [CrossRef]
 - Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-Industrial Lignocellulosic Biomass a Key to Unlock the Future Bio-Energy: A Brief Review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
 - Lorenci Woiciechowski, A.; Dalmas Neto, C.J.; Porto de Souza Vandenberghe, L.; de Carvalho Neto, D.P.; Novak Sydney, A.C.; Letti, L.A.J.; Karp, S.G.; Zevallos Torres, L.A.; Soccol, C.R. Lignocellulosic Biomass: Acid and Alkaline Pretreatments and Their Effects on Biomass Recalcitrance—Conventional Processing and Recent Advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef]
 - Katahira, R.; Elder, T.J.; Beckham, G.T. Chapter 1. A Brief Introduction to Lignin Structure. In Lignin Valorization: Emerging Approaches; Royal Society of Chemistry: Cambridge, UK, 2018; pp. 1–20. [Google Scholar]
 - Mukhtar, A.; Zaheer, M.; Saeed, M.; Voelter, W. Synthesis of Lignin Model Compound Containing a β-O-4 Linkage. Z Für Naturforschung B 2017, 72, 119–124. [Google Scholar] [CrossRef]
 - Shinde, S.H.; Hengne, A.; Rode, C.V. Lignocellulose-Derived Platform Molecules. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–31. [Google Scholar]
 - Chen, M.; Zhong, W.; Wu, K.; Wei, G.; Hu, Z.; Zheng, W.; Ruan, H.; Zhang, H.; Xiao, R. Catalytic Pyrolysis Mechanism of β-O-4 Type of Lignin Dimer: The Role of H Proton. Energy Fuels 2021, 35, 575–582. [Google Scholar] [CrossRef]
 - Gao, G.; Rong, R.; Zhang, Z.; Pan, B.; Sun, X.; Zhang, Q.; Zheng, G.; Xu, K.; Gao, L. Selective Oxidation of Benzyl Alcohol to Benzaldehyde over CoFe2O4 Nanocatalyst. Catal. Commun. 2023, 183, 106757. [Google Scholar] [CrossRef]
 - Luong, G.K.T.; Ku, Y. Selective Oxidation of Benzyl Alcohol in the Aqueous Phase by TiO2-Based Photocatalysts: A Review. Chem. Eng. Technol. 2021, 44, 2178–2190. [Google Scholar] [CrossRef]
 - Lapa, H.M.; Martins, L.M.D.R.S. Toluene Oxidation: CO2 vs Benzaldehyde: Current Status and Future Perspectives. ACS Omega 2024, 9, 26780–26804. [Google Scholar] [CrossRef] [PubMed]
 - Luo, H.; Chen, W.; Hu, J.; Zhang, F.; Hu, X. Highly Selective Oxidation of Toluene to Benzaldehyde in Alkaline Systems. Ind. Eng. Chem. Res. 2023, 62, 10051–10056. [Google Scholar] [CrossRef]
 - Claudio-Rizo, J.A.; Cano Salazar, L.F.; Flores-Guia, T.E.; Cabrera-Munguia, D.A. Estructuras Metal-Orgánicas (MOFs) Nanoestructuradas Para La Liberación Controlada de Fármacos. Mundo Nano. Rev. Interdiscip. Nanociencias Nanotecnología 2020, 14, 1e–29e. [Google Scholar] [CrossRef]
 - Ronda-Leal, M.; Osman, S.M.; Won Jang, H.; Shokouhimehr, M.; Romero, A.A.; Luque, R. Selective Hydrogenation of Furfural Using TiO2-Fe2O3/C from Ti-Fe-MOFs as Sacrificial Template: Microwave vs Continuous Flow Experiments. Fuel 2023, 333, 126221. [Google Scholar] [CrossRef]
 - Zhang, D.; Zhou, W.; Liu, Q.; Xia, Z. CH3 NH3 PbBr3 Perovskite Nanocrystals Encapsulated in Lanthanide Metal–Organic Frameworks as a Photoluminescence Converter for Anti-Counterfeiting. ACS Appl. Mater. Interfaces 2018, 10, 27875–27884. [Google Scholar] [CrossRef] [PubMed]
 - Ahmadi, M.; Ayyoubzadeh, S.M.; Ghorbani-Bidkorbeh, F.; Shahhosseini, S.; Dadashzadeh, S.; Asadian, E.; Mosayebnia, M.; Siavashy, S. An Investigation of Affecting Factors on MOF Characteristics for Biomedical Applications: A Systematic Review. Heliyon 2021, 7, e06914. [Google Scholar] [CrossRef]
 - Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured Metal–Organic Frameworks and Their Bio-Related Applications. Coord. Chem. Rev. 2016, 307, 342–360. [Google Scholar] [CrossRef]
 - Gedanken, A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrason. Sonochem. 2004, 11, 47–55. [Google Scholar] [CrossRef]
 - Mansoorianfar, M.; Nabipour, H.; Pahlevani, F.; Zhao, Y.; Hussain, Z.; Hojjati-Najafabadi, A.; Hoang, H.Y.; Pei, R. Recent Progress on Adsorption of Cadmium Ions from Water Systems Using Metal-Organic Frameworks (MOFs) as an Efficient Class of Porous Materials. Environ. Res. 2022, 214, 114113. [Google Scholar] [CrossRef]
 - Othong, J.; Boonmak, J.; Promarak, V.; Kielar, F.; Youngme, S. Sonochemical Synthesis of Carbon Dots/Lanthanoid MOFs Hybrids for White Light-Emitting Diodes with High Color Rendering. ACS Appl. Mater. Interfaces 2019, 11, 44421–44429. [Google Scholar] [CrossRef] [PubMed]
 - Wang, T.; Cao, X.; Jiao, L. MOFs-Derived Carbon-Based Metal Catalysts for Energy-Related Electrocatalysis. Small 2021, 17, e2004398. [Google Scholar] [CrossRef]
 - Dong, X.; Yan, E.; Lv, Y.; Zhou, Y.; Chu, X. Engineering MOF-Derived Hollow Metal Oxides toward Enhanced Electrocatalytic Oxygen Evolution Reaction. Appl. Catal. A Gen. 2024, 681, 119772. [Google Scholar] [CrossRef]
 - Ahmad, A.; Khan, S.; Tariq, S.; Luque, R.; Verpoort, F. Self-Sacrifice MOFs for Heterogeneous Catalysis: Synthesis Mechanisms and Future Perspectives. Mater. Today 2022, 55, 137–169. [Google Scholar] [CrossRef]
 - Almazán, F.; Lafuente, M.; Echarte, A.; Imizcoz, M.; Pellejero, I.; Gandía, L.M. UiO-66 MOF-Derived Ru@ZrO2 Catalysts for Photo-Thermal CO2 Hydrogenation. Chemistry 2023, 5, 720–729. [Google Scholar] [CrossRef]
 - Zhang, Y.; Xu, J.; Zhou, J.; Wang, L. Metal-Organic Framework-Derived Multifunctional Photocatalysts. Chin. J. Catal. 2022, 43, 971–1000. [Google Scholar] [CrossRef]
 - Yusuff, A.S.; Bhonsle, A.K.; Trivedi, J.; Bangwal, D.P.; Singh, L.P.; Atray, N. Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renew. Energy 2021, 170, 302–314. [Google Scholar] [CrossRef]
 - Mansir, N.; Teo, S.H.; Mijan, N.-A.; Taufiq-Yap, Y.H. Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catal. Commun. 2021, 149, 106201. [Google Scholar] [CrossRef]
 - Al-Saadi, A.; Mathan, B.; He, Y. Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew. Energy 2020, 158, 388–399. [Google Scholar] [CrossRef]
 - Alhassan, F.H.; Rashid, U.; Taufiq-Yap, Y.H. Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42−/ZrO2 nanoparticle solid catalyst. Fuel 2015, 142, 38–45. [Google Scholar] [CrossRef]
 - Pei, U.; Ruan, L.; Zeng, P.; Fu, H.; Zeng, L.; Liu, J.; Zhang, H.; Yang, K.; Zhu, L.; Hui, B. Controlled Synthesis of RuNi-CNTs Nano-Composites and Their Catalytic Performance in Benzene Hydrogenation. Catal. Lett. 2021, 151, 773–786. [Google Scholar] [CrossRef]
 - Gómez Bernal, H.; Benito, P.; Rodríguez-Castellón, E.; Raspolli Galletti, A.M.; Funaioli, T. Synthesis of Isopropyl Levulinate from Furfural: Insights on a Cascade Production Perspective. Appl. Catal. A Gen. 2019, 575, 111–119. [Google Scholar] [CrossRef]
 - Hosokawa, S.; Hayashi, Y.; Imamura, S.; Wada, K.; Inoue, M. Effect of the Preparation Conditions of Ru/CeO2 Catalysts for the Liquid Phase Oxidation of Benzyl Alcohol. Catal. Lett. 2009, 129, 394–399. [Google Scholar] [CrossRef]
 - Ferri, D.; Mondelli, C.; Krumeich, F.; Baiker, A. Discrimination of Active Palladium Sites in Catalytic Liquid-Phase Oxidation of Benzyl Alcohol. J. Phys. Chem. B 2006, 110, 22982–22986. [Google Scholar] [CrossRef] [PubMed]
 - Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef]
 - Zhang, K.; Yan, Y. Preparation of Fe3O4 @CSAC Catalyst and Its Degradation Performance and Heat Release Mechanisms in Sewage Degradation. RSC Adv. 2024, 14, 5132–5141. [Google Scholar] [CrossRef]
 - Mesa, S.; Arboleda, J.; Amaya, S.; Echavarría, A. Hidrotalcitas de NiZnFe y NiMgFe Modificadas Con V Y Cr Como Precursores de Catalizadores Para Deshidrogenación Oxidativa de Propano. Ing. Compet. 1969, 14, 169–178. [Google Scholar] [CrossRef]
 - Hu, L.; Zhong, P.; Sang, X.; Zeb, A.; Lin, X.; Tong, Y.; Yang, H. Integrating Dual Active Sites on Heterogeneous Bimetallic Selenide to Facilitate Hydrogen Evolution and Ethanol Oxidation. Appl. Surf. Sci. 2023, 637, 157912. [Google Scholar] [CrossRef]
 - Gómez-López, P.; Espro, C.; Rodríguez-Padrón, D.; Balu, A.M.; Ivars-Barceló, F.; Moreda, O.I.; Alvarado-Beltrán, C.G.; Luque, R. Mechanochemical Preparation of Magnetically Separable Fe and Cu-Based Bimetallic Nanocatalysts for Vanillin Production. Nanomaterials 2021, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
 - Wang, T.; Li, Z.; Kang, W.; Li, R.; Qu, K.; Wang, L.; Meng, F.; Li, H. Atomically Dispersed Fe/Zn Synergy in Sulfur-Modified Nitrogen-Doped Carbon for Boosting Oxygen Reduction Activity. J. Mater. Chem. A Mater. 2025, 13, 25423–25434. [Google Scholar] [CrossRef]
 - Liu, Y.; Pan, C.; Qiu, X.; Zhang, H.; Feng, H.; Tang, Y.; Shang, Z.; Song, H. Selective Oxidation of Benzyl Alcohol to Benzaldehyde Using Palladium Nanoparticle-Loaded Poly(Ionic Liquid)s Catalysts. Mol. Catal. 2025, 584, 115273. [Google Scholar] [CrossRef]
 - Aldosari, O.F. Iron-Palladium Supported Graphene as an Efficient Bimetallic Catalyst for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde. J. Saudi Chem. Soc. 2023, 27, 101671. [Google Scholar] [CrossRef]
 - Choudhary, V.R.; Chaudhari, P.A.; Narkhede, V.S. Solvent-Free Liquid Phase Oxidation of Benzyl Alcohol to Benzaldehyde by Molecular Oxygen Using Non-Noble Transition Metal Containing Hydrotalcite-like Solid Catalysts. Catal. Commun. 2003, 4, 171–175. [Google Scholar] [CrossRef]
 - Mangesh, V.L.; Govindarajan, M.; Raju Chekuri, R.B.; Perumal, T.; Rajendran, K.; Chandrasekaran, K.; Siva Kumar, N.; Basivi, P.K.; Alreshaidan, S.B.; Al-Fatesh, A.S. Ni–Fe Bimetallic Catalysts with High Dispersion Supported by SBA-15 Evaluated for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde. RSC Adv. 2024, 14, 2300–2310. [Google Scholar] [CrossRef] [PubMed]
 - Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Recent Progress in Asymmetric Bifunctional Catalysis Using Multimetallic Systems. Acc. Chem. Res. 2009, 42, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
 - Ronda-Leal, M.; Balu, A.M.; Luque, R.; Mauriello, F.; Ricchebuono, A.; Len, C.; Romero, A.A.; Paone, E. Continuous flow production of γ-valerolactone from methyl-levulinate promoted by MOF-derived Al2O3–ZrO2/C catalysts. RSC Sustain. 2025, 3, 2273–2285. [Google Scholar] [CrossRef]
 - Zhao, H.; Li, Q.; Wang, Z.; Wu, T.; Zhang, M. Synthesis of MIL-101(Cr) and Its Water Adsorption Performance. Microporous Mesoporous Mater. 2020, 297, 110044. [Google Scholar] [CrossRef]
 - Afolabi, M.A.; Xiao, D.; Chen, Y. The Impact of Surface Chemistry and Synthesis Conditions on the Adsorption of Antibiotics onto MXene Membranes. Molecules 2023, 29, 148. [Google Scholar] [CrossRef]
 - Ma, L.; Xu, J.; Liu, Y.; An, Y.; Pan, Z.; Yang, B.; Li, L.; Hu, T.; Lai, B. Improved Degradation of Tetracycline by Cu-Doped MIL-101(Fe) in a Coupled Photocatalytic and Persulfate Oxidation System: Efficiency, Mechanism, and Degradation Pathway. Sep. Purif. Technol. 2023, 305, 122450. [Google Scholar] [CrossRef]
 - Wu, Y.; Liu, Z.; Bakhtari, M.F.; Luo, J. Preparation of GO/MIL-101(Fe,Cu) Composite and Its Adsorption Mechanisms for Phosphate in Aqueous Solution. Environ. Sci. Pollut. Res. 2021, 28, 51391–51403. [Google Scholar] [CrossRef]
 - Dong, W.; Liu, X.; Shi, W.; Huang, Y. Metal–Organic Framework MIL-53(Fe): Facile Microwave-Assisted Synthesis and Use as a Highly Active Peroxidase Mimetic for Glucose Biosensing. RSC Adv. 2015, 5, 17451–17457. [Google Scholar] [CrossRef]
 - Elsherbiny, A.S.; Rady, A.; Abdelhameed, R.M.; Gemeay, A.H. Efficiency and Selectivity of Cost-Effective Zn-MOF for Dye Removal, Kinetic and Thermodynamic Approach. Environ. Sci. Pollut. Res. 2023, 30, 106860–106875. [Google Scholar] [CrossRef]
 - Zheng, H.; Mo, Q.; Zhang, X.; Huang, J.; Sheng, G. Efficacy and Mechanism of Activation Peroxymonosulfate for Tetracycline Degradation by AC-MIL-101(Fe)-Derived Magnetic CuO/Fe2O3/CuFe2O4. Colloids Surf. A Physicochem. Eng. Asp. 2024, 701, 134867. [Google Scholar] [CrossRef]
 - Parikh, S.J.; Goyne, K.W.; Margenot, A.J.; Mukome, F.N.D.; Calderón, F.J. Soil Chemical Insights Provided through Vibrational Spectroscopy. In Advances in Agronomy; Academic Press: San Diego, CA, USA, 2014; pp. 1–148. [Google Scholar]
 - Shojaei, A.F.; Tabatabaeian, K.; Zanjanchi, M.A. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol. J. Chem. Sci. 2025, 127, 481–491. [Google Scholar] [CrossRef]
 - Duarte, H.A.; Luggren, P.J.; Zelin, J.; Sad, M.E.; Díez, V.K.; Di Cosimo, J.I. Selective aerobic oxidation of benzyl alcohol on inexpensive and reusable ZnO/MnCO3 catalyst. Catal. Today 2022, 394, 178–189. [Google Scholar] [CrossRef]
 - Ferri, D.; Baiker, A. Advances in Infrared Spectroscopy of Catalytic Solid–Liquid Interfaces: The Case of Selective Alcohol Oxidation. Top. Catal. 2009, 52, 1323–1333. [Google Scholar] [CrossRef]
 - Jiang, S.; Huang, J.; Wang, Y.; Lu, S.; Li, P.; Li, C.; Li, F. Metal–Organic Frameworks Derived Magnetic Fe3O4/C for Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol. J. Chem. Technol. Biotechnol. 2021, 96, 639–649. [Google Scholar] [CrossRef]
 











| Catalyst | Reaction | Optimum Reaction Condition | Yield (%) | Ref. | ||
|---|---|---|---|---|---|---|
| Temp (°C) | Time (h) | CL (%) | ||||
| CFA-ZnO | Biodiesel synthesis | 140 | 3 | 0.5 | 83.17 | [27] | 
| WZC  (WO3-Zr2O3/CaO)  | Esterification and transesterification | 80 | 1 | 2 | 94.1 | [28] | 
| SrO–ZnO/Al2O3 | Transesterification | 70 | 3 | 10 | 95.1 | [29] | 
| Fe2O3MnOSO42−/ZrO2 | Transesterification of glycerol | 180 | 4 | 3 | 96.5 | [30] | 
| RuNi-CNTs-X | Hydrogenation of benzene | 50 | 6 | 0.4 | 70.9 | [31] | 
| Catalyst | Time (h) and Temperature (°C) | Oxidant | Yield (%) | Ref | 
|---|---|---|---|---|
| Pd/PILs | 110 °C, 4 h | 4 MPa O2 | 82 | [41] | 
| Fe: Pd NPs | 4 h | 1 bar of O2 | 86 | [42] | 
| Cu–Cr-HT | 210 °C, 5 h | O2 (6 mL/min) | 35 | [43] | 
| Ti(acac 1)-SBA-15 | 100 °C, 7 h | TBHP (tert-butyl hydroperoxide) | 90 | [44] | 
| NiFe2O4 NPs | 60 °C, 3 h | TBHP | 85 | [45] | 
| Catalyst | SBET (m2/g) | VBJH (cm3/g) | VMESO (cm3/g) | 
|---|---|---|---|
| Fe-MOF | 6.9 | 0.022 | 0.009 | 
| FeCu-MOF | 19.3 | 0.036 | 0.012 | 
| FeZn-MOF | 24.4 | 0.062 | 0.023 | 
| FeCuZn-MOF | 6.1 | 0.012 | 0.008 | 
| FeO | 11.6 | 0.029 | 0.014 | 
| FeCuO | 16.4 | 0.091 | 0.018 | 
| FeZnO | 19.7 | 0.094 | 0.024 | 
| FeCuZnO | 16.3 | 0.072 | 0.019 | 
| MOF | Metallic Precursor | Weight (g) | Mmol | Organic Linker | Weight (g) | Mmol | 
|---|---|---|---|---|---|---|
| Fe-MIL-101 | FeCl3 | 1.350 | 5 | Terephthalic acid | 1.678 | 10 | 
| FeCu-MIL-101 | FeCl3 CuCl2  | 0.670 0.426  | 2.5 | |||
| FeZn-MIL-101 | FeCl3 ZnCl2  | 0.670 0.341  | 2.5 | |||
| FeCuZn-MIL-101 | FeCl3 CuCl2 ZnCl2  | 0.373 0.284 0.227  | 1.67 | 
| MOF | Code | Oxide | Code | 
|---|---|---|---|
| Fe-MIL-101 | Fe-MOF | Fe2O3@C | FeO | 
| FeCu-MIL-101 | FeCu-MOF | CuO-Fe2O3@C | FeCuO | 
| FeZn-MIL-101 | FeZn-MOF | ZnO-Fe2O3@C | FeZnO | 
| FeCuZn-MIL-101 | FeCuZn-MOF | CuO-ZnO-Fe2O3@C | FeCuZnO | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Fernández, C.; Ronda-Leal, M.; Romero, A.Á.; Pineda, A. Synthesis of MOF-Derived Mono-, Bi- and Trimetallic Fe, Zn and Cu Oxides for Microwave-Assisted Benzyl Alcohol Oxidation. Catalysts 2025, 15, 1050. https://doi.org/10.3390/catal15111050
Moreno-Fernández C, Ronda-Leal M, Romero AÁ, Pineda A. Synthesis of MOF-Derived Mono-, Bi- and Trimetallic Fe, Zn and Cu Oxides for Microwave-Assisted Benzyl Alcohol Oxidation. Catalysts. 2025; 15(11):1050. https://doi.org/10.3390/catal15111050
Chicago/Turabian StyleMoreno-Fernández, Carmen, Marina Ronda-Leal, Antonio Ángel Romero, and Antonio Pineda. 2025. "Synthesis of MOF-Derived Mono-, Bi- and Trimetallic Fe, Zn and Cu Oxides for Microwave-Assisted Benzyl Alcohol Oxidation" Catalysts 15, no. 11: 1050. https://doi.org/10.3390/catal15111050
APA StyleMoreno-Fernández, C., Ronda-Leal, M., Romero, A. Á., & Pineda, A. (2025). Synthesis of MOF-Derived Mono-, Bi- and Trimetallic Fe, Zn and Cu Oxides for Microwave-Assisted Benzyl Alcohol Oxidation. Catalysts, 15(11), 1050. https://doi.org/10.3390/catal15111050
        
                                                
