Catalytic Dehydrogenative Cracking of C4 Hydrocarbons on a Bifunctional Metal–Acid Catalyst
Abstract
1. Introduction
2. Results
2.1. Catalyst Properties
2.2. Comparison Between BDHC and RZSM
2.3. Reaction Conditions
2.3.1. Reaction Temperature (T)
2.3.2. Weight Hourly Space Velocity (WHSV)
2.3.3. Catalyst–Oil Mass Ratio (C/O)
2.3.4. Feedstock Volume Dilution Ratio (D)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Catalysts
4.3. Test Equipment
4.4. Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| C/O | catalyst–oil mass ratio |
| D | feedstock volume dilution ratio |
| mr | molar ratio of methane to (ethene + propylene) |
| Pi | feed hydrocarbon partial pressure |
| T | reaction temperature |
| WHSV | weight hourly space velocity |
References
- Wakui, K.; Satoh, K.; Sawada, G.; Shiozawa, K.; Matano, K.; Suzuki, K.; Hayakawa, T.; Yoshimura, Y.; Murata, K.; Mizukami, F. Dehydrogenative Cracking of N-Butane Using Double–Stage Reaction. Appl. Catal. A Gen. 2002, 230, 195–202. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, X.; Zhu, G.; Xie, C. DCC-Plus Process and Flexibility of Its Products. Acta Pet. Sin. (Pet. Process. Sect.) 2019, 35, 217–223. [Google Scholar]
- Pan, R.; Jia, M.; Li, Y.; Li, X.; Dou, T. In Situ Delamination of Ferrierite Zeolite and Its Performance in the Catalytic Cracking of C4 Hydrocarbons. Chin. J. Chem. Eng. 2014, 22, 1237–1242. [Google Scholar] [CrossRef]
- Liu, J.; Xie, Z.; Xu, C.; Zhong, S.; Bai, E. Advances in Catalytic Cracking of C4 Olefin to Propylene. Chem. Ind. Eng. Process 2005, 24, 1347–1351. [Google Scholar]
- Wang, X.; Zhao, Z.; Xu, C.; Duan, A.; Zhang, L.; Jiang, G. Research Advances in the Catalytic Cracking of C4/C5 Hydrocarbons to Light Olefins. Chin. J. Appl. Chem. 2007, 24, 1225–1231. [Google Scholar]
- Ji, D.; Wang, B.; Qian, G.; Gao, Q.; Lü, G.; Yan, L.; Suo, J. A Highly Efficient Catalytic C4 Alkane Cracking over Zeolite ZSM-23. Catal. Commun. 2005, 6, 297–300. [Google Scholar] [CrossRef]
- Jo, S.B.; Kim, T.Y.; Lee, C.H.; Kang, S.; Kim, J.W.; Jeong, M.; Lee, S.C.; Kim, J.C. Hybrid Catalysts in a Double-Layered Bed Reactor for the Production of C2–C4 Paraffin Hydrocarbons. Catal. Commun. 2019, 127, 29–33. [Google Scholar] [CrossRef]
- Eng, C.; Miller, R.; Orriss, R. Producing Propylene. Hydrocarb. Eng. 2004, 7, 9. [Google Scholar]
- Agarwal, N.; Sanchez-Castillo, M.A.; Cortright, R.D.; Madon, R.J.; Dumesic, J.A. Catalytic Cracking of Isobutane and 2-Methylhexane over USY Zeolite: Identification of Kinetically Significant Reaction Steps. Ind. Eng. Chem. Res. 2002, 41, 4016–4027. [Google Scholar] [CrossRef]
- Guo, T.; Gao, J.; Zhang, Q. Overgrowth of ZSM-5 on Kaoline and Its Cayalytic Cracking Properities for N-Butane to Light Olefins. Ind. Catal. 2011, 19, 33–36. [Google Scholar]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Hou, W.; Lin, K.; Zhang, X.; Xu, B.; Wang, Y.; Lu, X.; Gao, Y.; Ma, R.; Fu, Y.; Zhu, W. Highly Stable and Selective Pt/TS-1 Catalysts for the Efficient Nonoxidative Dehydrogenation of Propane. Chem. Eng. J. 2023, 474, 145648. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Zhang, Q.; Kondratenko, V.A.; Jiang, G.; Sun, H.; Han, S.; Wang, Y.; Cui, G.; Zhou, M.; et al. Molecularly Defined Approach for Preparation of Ultrasmall Pt-Sn Species for Efficient Dehydrogenation of Propane to Propene. J. Catal. 2023, 418, 290–299. [Google Scholar] [CrossRef]
- Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B.M. Propane to Olefins Tandem Catalysis: A Selective Route Towards Light Olefins Production. Chem. Soc. Rev. 2021, 50, 11503–11529. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, Z. Dynamic Modeling of CATOFIN® Fixed-Bed Iso-Butane Dehydrogenation Reactor for Operational Optimization. Int. J. Chem. React. Eng. 2016, 14, 491–515. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cueto, J.; Alonso-Doncel, M.D.M.; Kubů, M.; Čejka, J.; Serrano, D.P.; García-Muñoz, R.A. Propane Dehydrogenation over Pt and Ga-Containing MFI Zeolites with Modified Acidity and Textural Properties. Catal. Today 2024, 427, 114437. [Google Scholar] [CrossRef]
- Chen, S.; Luo, R.; Zhao, Z.; Pei, C.; Xu, Y.; Lu, Z.; Zhao, C.; Song, H.; Gong, J. Concerted Oxygen Diffusion Across Heterogeneous Oxide Interfaces for Intensified Propane Dehydrogenation. Nat. Commun. 2023, 14, 2620. [Google Scholar] [CrossRef]
- Dai, Y.; Gao, X.; Wang, Q.; Xiaoyue, W.; Zhou, C.; Yang, Y. Recent Progress in Heterogeneous Metal and Metal Oxide Catalysts for Direct Dehydrogenation of Ethane and Propane. Chem. Soc. Rev. 2021, 50, 5590–5630. [Google Scholar] [CrossRef]
- Li, C.; Wang, G. Dehydrogenation of Light Alkanes to Mono-Olefins. Chem. Soc. Rev. 2021, 50, 4359–4381. [Google Scholar] [CrossRef]
- Nawaz, Z.; Chu, Y.; Yang, W.; Tang, X.; Wang, Y.; Wei, F. Study of Propane Dehydrogenation to Propylene in an Integrated Fluidized Bed Reactor Using Pt-Sn/Al-SAPO-34 Novel Catalyst. Ind. Eng. Chem. Res. 2010, 49, 4614–4619. [Google Scholar] [CrossRef]
- Mier, D.; Aguayo, A.T.; Gamero, M.; Gayubo, A.G.; Bilbao, J. Kinetic Modeling of N-Butane Cracking on HZSM-5 Zeolite Catalyst. Ind. Eng. Chem. Res. 2010, 49, 8415–8423. [Google Scholar] [CrossRef]
- Rahimi, N.; Karimzadeh, R. Catalytic Cracking of Hydrocarbons over Modified ZSM-5 Zeolites to Produce Light Olefins: A Review. Appl. Catal. A Gen. 2011, 398, 1–17. [Google Scholar] [CrossRef]
- Zhao, G.; Teng, J.; Xie, Z.; Jin, W.; Yang, W.; Chen, Q.; Tang, Y. Effect of Phosphorus on HZSM-5 Catalyst for C4-Olefin Cracking Reactions to Produce Propylene. J. Catal. 2007, 248, 29–37. [Google Scholar] [CrossRef]
- Zhao, G.; Teng, J.; Zhang, Y.; Xie, Z.; Yue, Y.; Chen, Q.; Tang, Y. Synthesis of ZSM-48 Zeolites and Their Catalytic Performance in C4-Olefin Cracking Reactions. Appl. Catal. A Gen. 2006, 299, 167–174. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Chen, Z.; Li, Z.; Yang, Q.; Hu, L.; Jiang, G.; Xu, C.; Wang, Y.; Zhao, Z. Hierarchical ZSM-5 Zeolites with Tunable Sizes of Building Blocks for Efficient Catalytic Cracking of I-Butane. Ind. Eng. Chem. Res. 2018, 57, 10327–10335. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, Z.; Xu, C.; Duan, A.; Zhang, P. CrHZSM-5 Zeolites–Highly Efficient Catalysts for Catalytic Cracking of Isobutane to Produce Light Olefins. Catal. Lett. 2006, 109, 65–70. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, Z.; Xu, C.; Duan, A.; Wang, X.; Zhang, P. Catalytic Cracking of Isobutane over HZSM-5, FeHZSM-5 and CrHZSM-5 Catalysts with Different SiO2/Al2O3 Ratios. J. Porous Mater. 2008, 15, 213–220. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, Z.; Xu, C.; Zhang, P.; Duan, A. FeHZSM-5 Molecular Sieves – Highly Active Catalysts for Catalytic Cracking of Isobutane to Produce Ethene and Propylene. Catal. Commun. 2006, 7, 199–203. [Google Scholar] [CrossRef]
- Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. Propane Dehydrogenation over a Cr2O3/Al2O3 Catalyst: Transient Kinetic Modeling of Propene and Coke Formation. Appl. Catal. A Gen. 2003, 248, 105–116. [Google Scholar] [CrossRef]
- Vernikovskaya, N.V.; Savin, I.G.; Kashkin, V.N.; Pakhomov, N.A.; Ermakova, A.; Molchanov, V.V.; Nemykina, E.I.; Parahin, O.A. Dehydrogenation of Propane–Isobutane Mixture in a Fluidized Bed Reactor over Cr2O3/Al2O3 Catalyst: Experimental Studies and Mathematical Modelling. Chem. Eng. J. 2011, 176–177, 158–164. [Google Scholar] [CrossRef]
- Jin, D.; Xu, H.; Zhu, J.; Cheng, D. Activation of Cr2O3 for Propane Dehydrogenation by Doping with Pt Single-Atom Promotor. Mol. Catal. 2023, 551, 113624. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Mashkin, M.Y.; Baybursky, V.L.; Pribytkov, P.V.; Murashova, E.V.; Kalmykov, K.B.; Shesterkina, A.A.; Kapustin, G.I.; Tkachenko, O.P.; Dunaev, S.F. Effect of Chromium Precursor on the Catalytic Behavior of Chromium Oxide Catalysts in Oxidative Propane and Isobutane Dehydrogenation with Carbon Dioxide. Catalysts 2025, 15, 226. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Z.; Cai, L.; Tian, X.; Chu, W.; Yang, W. Effect of Calcination Atmosphere on the Structure and Catalytic Behavior of Cr2O3/Al2O3 Catalysts for Dehydrogenation of Propane. Ind. Eng. Chem. Res. 2022, 61, 16479–16488. [Google Scholar] [CrossRef]
- Olsbye, U.; Virnovskaia, A.; Prytz, Ø.; Tinnemans, S.J.; Weckhuysen, B.M. Mechanistic Insight in the Ethane Dehydrogenation Reaction over Cr/Al2O3 Catalysts. Catal. Lett. 2005, 103, 143–148. [Google Scholar] [CrossRef]
- Krannila, H.; Haag, W.O.; Gates, B.C. Monomolecular and Bimolecular Mechanisms of Paraffin Cracking: N-Butane Cracking Catalyzed by HZSM-5. J. Catal. 1992, 135, 115–124. [Google Scholar] [CrossRef]
- Iwase, Y.; Sakamoto, Y.; Shiga, A.; Miyaji, A.; Motokura, K.; Koyama, T.; Baba, T. Shape-Selective Catalysis Determined by the Volume of a Zeolite Cavity and the Reaction Mechanism for Propylene Production by the Conversion of Butene Using a Proton-Exchanged Zeolite. J. Phys. Chem. C 2012, 116, 5182–5196. [Google Scholar] [CrossRef]
- Lin, L.; Qiu, C.; Zhuo, Z.; Zhang, D.; Zhao, S.; Wu, H.; Liu, Y.; He, M. Acid Strength Controlled Reaction Pathways for the Catalytic Cracking of 1-Butene to Propene over ZSM-5. J. Catal. 2014, 309, 136–145. [Google Scholar] [CrossRef]
- Wakui, K.; Satoh, K.; Sawada, G.; Shiozawa, K.; Matano, K.; Suzuki, K.; Hayakawa, T.; Yoshimura, Y.; Murata, K.; Mizukami, F. Cracking of N-Butane over Alkaline Earth-Containing HZSM-5 Catalysts. Catal. Lett. 2002, 84, 259–264. [Google Scholar] [CrossRef]
- Wakui, K.; Satoh, K.; Sawada, G.; Shiozawa, K.; Matano, K.; Suzuki, K.; Hayakawa, T.; Yoshimura, Y.; Murata, K.; Mizukami, F. Dehydrogenative Cracking of N-Butane over Modified HZSM-5 Catalysts. Catal. Lett. 2002, 81, 83–88. [Google Scholar] [CrossRef]
- Chen, C.; Rangarajan, S.; Hill, I.M.; Bhan, A. Kinetics and Thermochemistry of C4–C6 Olefin Cracking on H-ZSM-5. Acs Catal. 2014, 4, 2319–2327. [Google Scholar] [CrossRef]
- Miyaji, A.; Sakamoto, Y.; Iwase, Y.; Yashima, T.; Koide, R.; Motokura, K.; Baba, T. Selective Production of Ethene and Propylene via Monomolecular Cracking of Pentene over Proton-Exchanged Zeolites: Pentene Cracking Mechanism Determined by Spatial Volume of Zeolite Cavity. J. Catal. 2013, 302, 101–114. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Banerjee, S.; Panjala, D. Product Distribution in the Aromatization of Dilute Ethene over H-GaAlMFI Zeolite: Effect of Space Velocity. Microporous Mesoporous Mater. 2002, 51, 203–210. [Google Scholar] [CrossRef]
- Hakuli, A.; Kytökivi, A.; Krause, A.O.I. Dehydrogenation of I-Butane on CrOx/Al2O3 Catalysts Prepared by ALE and Impregnation Techniques. Appl. Catal. A Gen. 2000, 190, 219–232. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, X.; Xu, C.; Gao, J. Secondary Cracking of Gasoline and Diesel from Heavy Oil Catalytic Pyrolysis. Chin. J. Chem. Eng. 2007, 15, 309–314. [Google Scholar] [CrossRef]











| Al2O3 | SiO2 | P2O5 | Fe2O3 | Cr2O3 | |
|---|---|---|---|---|---|
| BDHC | 35.6 | 60.9 | 1.15 | 0.59 | 0.93 |
| RZSM | 50.4 | 43.5 | 1.43 |
| BDHC | RZSM | |
|---|---|---|
| Porous properties | ||
| Surface area A/(m2·g−1) | 223.1 | 199.4 |
| Pore volume v/(cm3·g−1) | 0.2044 | 0.1485 |
| Micropore volume v/(cm3·g−1) | 0.0588 | 0.0502 |
| Relative crystallinity/% | 43.1 | 26.9 |
| Items | 200 °C | 350 °C | ||||||
|---|---|---|---|---|---|---|---|---|
| Brønsted Acid | Lewis Acid | Total | B/L | Brønsted Acid | Lewis Acid | Total | B/L | |
| BDHC | 50.52 | 12.19 | 68.71 | 4.14 | 15.3 | 9.75 | 25.05 | 1.57 |
| RZSM | 62.91 | 14.55 | 77.46 | 4.32 | 27.9 | 11.19 | 39.09 | 2.49 |
| Items | Conversion/% | Yields/% | |||||||
|---|---|---|---|---|---|---|---|---|---|
| H2 | Methane | Ethane | Ethene | Propylene | Propane | C5+ | Coke | ||
| BDHC | 59.21 | 0.39 | 1.99 | 0.95 | 12.95 | 25.26 | 4.55 | 10.37 | 2.46 |
| RZSM | 40.00 | 0.29 | 1.88 | 1.48 | 5.87 | 20.96 | 1.09 | 7.64 | 1.15 |
| Items | Feeds | Catalysts | Ethene Yield/% | Propylene Yield/% |
|---|---|---|---|---|
| This paper | C4 hydrocarbons | ZSM-5/Cr-Fe | 11.20 | 27.51 |
| Ji [6] | C4 alkane | HZSM-23-30 | 41.70 | 14.10 |
| Guo [10] | n-butane | ZSM-5 overgrowth on kaoline | 25.31 | 15.15 |
| Lu [26] | iso-butane | CrHZSM-5 | 30.80 | 25.30 |
| Wakui [35] | n-butane | Mg-ZSM-5 | 22.18 | 14.70 |
| Iwase [36] | Butene | Proton-exchanged zeolite | 6.50 | 48.30 |
| Lin [37] | 1-butene | ZSM-5 | 4.79 | 30.30 |
| Items | Temperature T/K | Activation Energy a/(kJ/mol) |
|---|---|---|
| iso-butane | 923 | 233.5 |
| n-butane | 923 | 279.2 |
| iso-butene | 873 | 33.1 |
| 1-butene | 873 | 41.3 |
| Items | Iso-Butane | n-Butane | Iso-Butene | 1-Butene | Cis-2-Butene | Trans-2-Butene | Total |
|---|---|---|---|---|---|---|---|
| Mass proportion/% | 15.35 | 5.11 | 34.95 | 14.90 | 9.86 | 19.82 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Zhu, G.; Yuan, Q.; Yang, J. Catalytic Dehydrogenative Cracking of C4 Hydrocarbons on a Bifunctional Metal–Acid Catalyst. Catalysts 2025, 15, 1011. https://doi.org/10.3390/catal15111011
Ma W, Zhu G, Yuan Q, Yang J. Catalytic Dehydrogenative Cracking of C4 Hydrocarbons on a Bifunctional Metal–Acid Catalyst. Catalysts. 2025; 15(11):1011. https://doi.org/10.3390/catal15111011
Chicago/Turabian StyleMa, Wenming, Genquan Zhu, Qimin Yuan, and Jun Yang. 2025. "Catalytic Dehydrogenative Cracking of C4 Hydrocarbons on a Bifunctional Metal–Acid Catalyst" Catalysts 15, no. 11: 1011. https://doi.org/10.3390/catal15111011
APA StyleMa, W., Zhu, G., Yuan, Q., & Yang, J. (2025). Catalytic Dehydrogenative Cracking of C4 Hydrocarbons on a Bifunctional Metal–Acid Catalyst. Catalysts, 15(11), 1011. https://doi.org/10.3390/catal15111011

