A Novel Choline Alkali–Thiourea Pretreatment for Enhanced Enzymatic Hydrolysis of Reed Straw
Abstract
1. Introduction
2. Results and Discussion
2.1. Amount of Water Added
2.2. Pretreatment Time
2.3. Pretreatment Temperature
2.4. Characterization
2.4.1. Surface Structure by SEM
2.4.2. Surface Roughness by AFM
2.4.3. Functional Groups by FTIR
2.4.4. Crystallinity Index by XRD
2.4.5. Thermal Stability by TGA
2.5. Applications to Other Types of Biomass
2.6. Reuse of Pretreatment Solvents
2.7. Multidimensional Comprehensive Analysis
2.8. Material Balance
3. Materials and Methods
3.1. Reagents and Materials
3.2. Preparation of ChOH-TH
3.3. Lignocellulosic Biomass Pretreatment
3.4. Chemical Composition Analysis
3.5. Enzymatic Hydrolysis
3.6. Characterization of Reed Straw
3.6.1. Scanning Electron Microscopy (SEM)
3.6.2. Atomic Force Microscopy (AFM)
3.6.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.6.4. X-Ray Diffraction (XRD)
3.6.5. Thermogravimetric Analysis (TGA)
3.7. Reuse of Pretreatment Solution
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| DESs | Deep eutectic solvents |
| ALDES | Alkaline deep eutectic solvent |
| SEM | Scanning electron microscope |
| AFM | Atomic force microscopy |
| FTIR | Fourier-transform Infrared |
| XRD | X-ray diffraction |
| CrI | crystallinity index |
| TGA | Thermogravimetric analysis |
| DTG | Derivative thermogravimetry |
| ChOH-TH | Choline hydroxide and thiourea |
References
- Liu, J.P.; Xie, Y.; Xu, X.; Xiang, R.R.; Zhang, C.Y.; Ji, Z.; Yong, Q.; Ling, Z. Microwave assisted alkaline deep eutectic solvents treatment inducing deconstruction of recalcitrant moso bamboo cell walls for highly efficient dual-enzymatic saccharification. Chem. Eng. J. 2025, 508, 160909. [Google Scholar] [CrossRef]
- Zhu, R.N.; Yang, M.; Yin, J.; Wu, Z.; Li, M.R.; Zhao, L.H.; Wang, X.J.; Ren, J.L. Mild sodium carbonate pretreatment of wheat straw for improving cellulose and xylan enzymatic hydrolysis. Ind. Crops Prod. 2025, 227, 120728. [Google Scholar] [CrossRef]
- Liu, H.J.; Sun, D.Y.; Yang, L.; Ma, G.H.; Xia, R.Y.; Wang, Z.Q.; Yao, M.Z.; Gao, L.G.; Wei, R.P.; Pan, X.M.; et al. Pretreatment of enzymatic hydrolysis lignin based on deep eutectic solvent containing a reversibly-soluble base. Int. J. Biol. Macromol. 2025, 301, 140452. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, C.; Tang, W.; He, Y.C. Comprehensive understanding of enzymatic saccharification of Betaine: Lactic acid-pretreated sugarcane bagasse. Bioresour. Technol. 2023, 386, 129485. [Google Scholar] [CrossRef]
- Zhang, J.J.; Song, X.; Wu, Y.; Liang, J.; Lu, J.; Zhang, J.F. Waste to wealth: A novel low temperature eco-friendly lignocellulose pretreatment strategy for glucose production. Biochem. Eng. J. 2024, 209, 109384. [Google Scholar] [CrossRef]
- Tang, W.; Qian, H.J.; Wang, X.Y.; Huang, C.X.; He, Y.C. Adequately converting poplar sawdust’s carbohydrates to furfural and glucose by employing acid oxidation pretreatment and solid acid catalysis. Ind. Crops Prod. 2024, 221, 119374. [Google Scholar] [CrossRef]
- Semenova, M.V.; Rozhkova, A.M.; Osipov, D.O.; Telitsin, V.D.; Rubtsova, E.A.; Kondrat’eva, E.G.; Vasil’eva, I.S.; Morozova, O.V.; Yaropolov, A.I.; Sinitsyn, A.P. Methods for Preprocessing Reeds to Obtain Enzymatic Hydrolysates with a High Sugar Content. Appl. Biochem. Microbiol. 2024, 60, 931–941. [Google Scholar] [CrossRef]
- Li, R.L.; Zheng, Y.Y.; Zhao, X.X.; Yong, Q.; Meng, X.Z.; Ragauskas, A.; Huang, C.X. Recent advances in biomass pretreatment using biphasic solvent systems. Green. Chem. 2023, 25, 2505–2523. [Google Scholar] [CrossRef]
- Farhan, M.; Hasani, I.W.; Khafaga, D.S.R.; Ragab, W.M.; Kazi, R.N.A.; Aatif, M.; Muteeb, G.; Fahim, Y.A. Enzymes as catalysts in industrial biocatalysis: Advances in engineering, applications, and sustainable integration. Catalysts 2025, 15, 891. [Google Scholar] [CrossRef]
- Brunecky, R.; Li, Y.D.; Decker, S.R.; Himmel, M.E. Advancing continuous enzymatic hydrolysis for improved biomass saccharification. Biotechnol. Biofuels Bioprod. 2025, 18, 82. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, Y.; Wang, Y.Y.; Gong, W.H.; Ma, C.Y.; Li, S.; Wen, J.L. Promoting the disassemble and enzymatic saccharification of bamboo shoot shells via efficient hydrated alkaline deep eutectic solvent pretreatment. Int. J. Biol. Macromol. 2024, 264, 130702. [Google Scholar] [CrossRef]
- Guo, J.W.; Yu, G.C.; Wang, J.L. Comparative insight into biomass pretreatment by choline chloride-based deep eutectic solvents in relation to their physicochemical characteristics. J. Environ. Chem. Eng. 2025, 13, 118256. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Sun, Z.W.; Li, N.; Zhu, L.B.; Liu, Z.Q.; Xie, C.Y.; Zhang, B.X.; Zheng, Z.; Liang, S.Y.; Yan, J.; et al. Effects of Combination of Steam Explosion and Alkali Pretreatment on Enzymatic Hydrolysis, Sugar Yields, and Structural Properties of Reed Straw. Waste Biomass Valori. 2025, 16, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, A.; Li, X.H.; Xu, W.B.; Duan, X.X.; Shi, J.Y.; Li, X.Y. Research progress of deep eutectic solvents in lignocellulosic biomass pretreatment. Cellulose 2025, 32, 4637–4650. [Google Scholar] [CrossRef]
- Zhao, X.X.; Wang, J.H.; Lan, K.; Zhao, Z.C.; Lai, C.H.; Huang, C.X.; Yong, Q. Integrated Nondestructive Spectroscopic Technology to Reveal the Influence Mechanism of Lignins from Pretreated Corn Stover on Cellulose Saccharification. ACS Sustain. Chem. Eng. 2024, 12, 2871–2880. [Google Scholar] [CrossRef]
- Di, J.H.; Li, Q.; Ma, C.L.; He, Y.C. An efficient and sustainable furfurylamine production from biomass-derived furfural by a robust mutant co-transaminase biocatalyst. Bioresour. Technol. 2023, 369, 128425. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, T.X.; Li, H.; Zhao, Q.S.; Zhao, B. Synergism of jet milling and deep eutectic solvent pretreatment on grapevine lignin fractionation and enhancing enzymatic hydrolysis. Int. J. Biol. Macromol. 2024, 269, 132144. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Cheng, L.; Zhou, X.; Ouyang, S.P. Comparative Evaluation of Dilute Acid, Alkaline, and Deep Eutectic Solvent Pretreatments on Enzymatic Hydrolysis of Sunflower Stalk Bark. Appl. Biochem. Biotechnol. 2025, 15, 1–16. [Google Scholar] [CrossRef]
- Li, Q.; Gao, R.Y.; Li, Y.C.; Fan, B.; Ma, C.L.; He, Y.C. Improved biotransformation of lignin-valorized vanillin into vanillylamine in a sustainable bioreaction medium. Bioresour. Technol. 2023, 384, 129292. [Google Scholar] [CrossRef]
- Wu, M.J.; Di, J.H.; Gong, L.; He, Y.C.; Ma, C.L.; Deng, Y. Enhanced adipic acid production from sugarcane bagasse by a rapid room temperature pretreatment. Chem. Eng. J. 2023, 452, 139320. [Google Scholar] [CrossRef]
- Xu, D.Z.; Ma, C.L.; Wu, M.J.; Deng, Y.; He, Y.C. Improved production of adipic acid from a high loading of corn stover via an efficient and mild combination pretreatment. Bioresour. Technol. 2023, 382, 129196. [Google Scholar] [CrossRef]
- Sha, H.; Cao, S.X.; Zhao, B.; Dong, Z.; Wang, G.; Duan, J. Effect of alkaline deep eutectic solvents pretreatment on CH4 yield from anaerobic digestion of corn stover. Energy 2024, 302, 131683. [Google Scholar] [CrossRef]
- Song, W.L.; Jiang, J.A.; Jiang, H.X.; Liu, C.T.; Dong, Y.; Chen, X.; Xiao, L.P. Acid/alkali-catalyzed deep eutectic solvent pretreatment of corn straw for enhanced biohydrogen production. Fuel 2023, 348, 128521. [Google Scholar] [CrossRef]
- Ortega-Sanhueza, I.; Albornoz-Palma, G.; Torres, C.; Andrade, A.; Pereira, M.; Marzialetti, T. The impact of humidity on fractionation of Eucalyptus globulus pinchips using alkaline DES of potassium carbonate and glycerol. Cellulose 2025, 32, 1–10. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.C.; Ali, M.F.; Abdeltawab, A.A.; Yakout, S.M.; Yu, G.R. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour. Technol. 2018, 263, 325–333. [Google Scholar] [CrossRef]
- Yang, J.Y.; Wang, Y.; Zhang, W.J.; Li, M.F.; Peng, F.; Bian, J. Alkaline deep eutectic solvents as novel and effective pretreatment media for hemicellulose dissociation and enzymatic hydrolysis enhancement. Int. J. Biol. Macromol. 2021, 193, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- He, C.J.; Li, X.L.; Luo, F.Q.; Mi, C.Y.; Zhan, A.; Ou, R.X.; Fan, J.J.; Clark, J.H.; Yu, Q. Glycol-based Alkaline Deep Eutectic Solvents for “Lignin-First” Dissolution from Coconut Shells. ACS Sustain. Chem. Eng. 2024, 12, 11327–11337. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Jeihanipour, A.; Karimi, K.; Taherzadeh, M.J. Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production. J. Chem. Technol. Biotechnol. 2012, 87, 1209–1214. [Google Scholar] [CrossRef]
- Ul Haq, I.; Mustafa, Z.; Nawaz, A.; Rehman, A.U.; Mukhtar, H. Effect of physical and chemical pretreatment methods on sawdust for improved saccharification. Pak. J. Bot. 2020, 52, 1435–1440. [Google Scholar] [CrossRef]
- Yang, B.Y.; Zhu, L.L.; He, Y.C. Valorization of rapeseed straw through alkali-assisting deep eutectic solvent ChCl:Thiourea pretreatment at room temperature. Fuel 2024, 378, 132932. [Google Scholar] [CrossRef]
- Zhang, L.H.; Zhao, X.; Chen, L.; Zhang, X. Pretreatment with fermentable and recyclable deep eutectic solvent (DES) for improving resource utilization of biomass. Ind. Crops Prod. 2022, 190, 115868. [Google Scholar] [CrossRef]
- Piskulich, Z.A.; Mesele, O.O.; Thompson, W.H. Activation energies and beyond. Chem. A Eur. J. 2019, 123, 7185–7194. [Google Scholar] [CrossRef] [PubMed]
- Yanak, S.; Buyukkileci, A.O. Delignification of corncob by choline chloride-urea deep eutectic solvent for enzymatic production of xylooligosaccharides. Ind. Crops Prod. 2024, 217, 118894. [Google Scholar] [CrossRef]
- Xu, X.; Wang, K.; Zhou, Y.B.; Lai, C.H.; Zhang, D.H.; Xia, C.L.; Pugazhendhi, A. Comparison of organosolv pretreatment of masson pine with different solvents in promoting delignification and enzymatic hydrolysis efficiency. Fuel 2023, 338, 127361. [Google Scholar] [CrossRef]
- Wu, R.J.; Li, Y.Z.; Wang, X.D.; Fu, Y.J.; Qin, M.H.; Zhang, Y.C. In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment. Bioresour. Technol. 2023, 369, 128410. [Google Scholar] [CrossRef]
- Velmurugan, R.; Kuhad, R.C.; Gupta, R.; Chakraborty, S.; Ashokkumar, V.; Xia, C.L.; Pugazhendhi, A. Ionic liquid under alkaline aqueous conditions improves corncob delignification, polysaccharide recovery, enzymatic hydrolysis and ethanol fermentation. Biomass Bioenergy 2023, 178, 106980. [Google Scholar] [CrossRef]
- Ahmad, P.; Khalid, A.; Khan, A.; Muhammad, N. Evaluation of [Emim]Glu ionic liquid as a deconstruction solvent for lignocellulosic biomass to biobased materials. Biomass Bioenergy 2025, 204, 108380. [Google Scholar] [CrossRef]
- Jiang, C.X.; He, Y.C.; Chong, G.G.; Di, J.H.; Tang, Y.J.; Ma, C.L. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. J. Biotechnol. 2017, 259, 73–82. [Google Scholar] [CrossRef]
- Kshirsagar, S.D.; Waghmare, P.R.; Loni, P.C.; Patil, S.A.; Govindwar, S.P. Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv. 2015, 5, 46525–46533. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Wu, C.Q.; Tang, W.; Ma, C.L.; He, Y.C. A novel cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice husk to efficiently enhance its enzymatic hydrolysis. Bioresour. Technol. 2023, 376, 128806. [Google Scholar] [CrossRef]
- Pang, C.S.; Xie, T.J.; Lin, L.; Zhuang, J.P.; Liu, Y.; Shi, J.B.; Yang, Q.L. Changes of the surface structure of corn stalk in the cooking process with active oxygen and MgO-based solid alkali as a pretreatment of its biomass conversion. Bioresour. Technol. 2012, 103, 432–439. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Z.R.; Zhang, K.J.; Si, M.Y.; Liu, M.R.; Chai, L.Y.; Liu, X.D. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour. Technol. 2017, 245, 419–425. [Google Scholar] [CrossRef]
- Dash, D.; Mund, N.K.; Upadhyay, D.; Mishra, P.; Dash, S.K.; Nayak, N.R. Evaluation of alkali and cellulose solvent pretreatments for fermentable sugar production from the biomass of Phragmites karka (Retz.) Trin. ex Steud.: A high biomass producing grass. Biomass Convers. Biorefin. 2021, 13, 7725–7736. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Xu, J.; Xie, J.X.; Zhu, S.Y.; Wang, B.; Li, J.; Chen, K.F. Physicochemical Transformation and Enzymatic Hydrolysis Promotion of Reed Straw after Pretreatment with a New Deep Eutectic Solvent. Carbohydr. Polym. 2022, 290, 119472. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, D.; Tang, W.; Ma, C.L.; He, Y.C. Improved Enzymatic Saccharification of Bulrush via an Efficient Combination Pretreatment. Bioresour. Technol. 2023, 383, 129369. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Z.; Tang, W.; Li, L.; Huang, M.H.; Ma, C.L.; He, Y.C. Enhancing enzymatic hydrolysis of waste sunflower straw by clean hydrothermal pretreatment. Bioresour. Technol. 2023, 383, 129236. [Google Scholar] [CrossRef] [PubMed]
- Sirvio, J.A.; Visanko, M.; Liimatainen, H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 2016, 17, 3025–3032. [Google Scholar] [CrossRef]
- Tang, W.; Wu, X.X.; Huang, C.X.; Ling, Z.; Lai, C.H.; Yong, Q. Revealing the influence of metallic chlorides pretreatment on chemical structures of lignin and enzymatic hydrolysis of waste wheat straw. Bioresour. Technol. 2021, 342, 125983. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, V.R.; Pandey, A.; Pant, K.K.; Henry, R.J. Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment. Bioresour. Technol. 2021, 337, 125480. [Google Scholar] [CrossRef]
- Binczarski, M.J.; Zuberek, J.; Fraczyk, J.; Kolesinska, B.; Radojcin, M.; Pavkov, I.; Wiktorowska-Sowa, E.; Piotrowski, J.; Kaminski, Z.J.; Witonska, I.A. Application of Microorganisms for the Valorization of Side-Products of Rapeseed De-Oiling. Biomolecules 2025, 15, 917. [Google Scholar] [CrossRef]
- Menya, E.; Olupot, P.W.; Storz, H.; Lubwama, M.; Kiros, Y. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Manag. 2018, 81, 104–116. [Google Scholar] [CrossRef]
- Chamorro, F.; Carpena, M.; Lourenço-Lopes, C.; Taofiq, O.; Otero, P.; Cao, H.; Xiao, J.B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Walnut (Juglans Regia) as a Source of Bioactive Compounds for the Formulation of Nutraceuticals and Functional Foods. Biol. Life Sci. Forum 2022, 12, 35. [Google Scholar] [CrossRef]
- Sharma, S.; Tsai, M.L.; Sharma, V.; Sun, P.P.; Nargotra, P.; Bajaj, B.K.; Chen, C.W.; Dong, C.D. Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products. Environments 2022, 10, 6. [Google Scholar] [CrossRef]
- Sluiter, A.D.; Hames, B.R.; Ruiz, O.R.; Scarlata, C.J.; Sluiter, J.; Templeton, D.W.; Crocker, D.P. Determination of structural carbohydrates and lignin in biomass national renewable. Energy Lab. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Wu, M.J.; Gong, L.; Ma, C.L.; He, Y.C. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresour. Technol. 2021, 340, 125695. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Vilas, A.; Bruque, J.M.; Gonzalez-Martin, M.L. Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. application to a biomaterial surface. Ultramicroscopy 2007, 107, 617–625. [Google Scholar] [CrossRef]













| Sample | Rq (nm) | Ra (nm) | Rmax (nm) | SA (nm2) |
|---|---|---|---|---|
| Raw | 20.17 | 15.98 | 147.33 | 1,086,333 |
| Residue | 103.57 | 77.27 | 752.00 | 1,831,333 |
| Sample | Chemical Components (%) | Solid Recovery Yield | Delignification | Reducing Sugar Yield | ||
|---|---|---|---|---|---|---|
| Polysaccharides | Lignin | Ash | (%) | |||
| Raw | ||||||
| Corn straw | 56.40 ± 1.14 | 26.29 ± 0.40 | 4.50 ± 0.28 | / | / | 18.23 |
| Sorghum straw | 52.40 ± 0.51 | 24.29 ± 0.27 | 5.78 ± 0.25 | / | / | 21.39 |
| Rape straw | 47.89 ± 1.63 | 19.95 ± 0.04 | 0.37 ± 0.08 | / | / | 19.91 |
| Wheat bran | 56.08 ± 0.41 | 17.67 ± 1.03 | 0.47 ± 0.13 | / | / | 32.45 |
| Walnut green shell | 37.12 ± 0.74 | 29.41 ± 0.26 | 0.35 ± 0.11 | / | / | 17.31 |
| Sunflower disk | 53.17 ± 1.04 | 14.09 ± 0.34 | 0.30 ± 0.15 | / | / | 32.01 |
| Rice hull | 51.77 ± 1.08 | 23.31 ± 0.97 | 10.82 ± 0.16 | / | / | 8.67 |
| Bamboo powder | 59.62 ± 0.72 | 29.31 ± 1.29 | 0.35 ± 0.13 | / | / | 7.48 |
| Residue | ||||||
| Corn straw | 84.77 ± 0.63 | 14.20 ± 1.69 | 0.62 ± 0.21 | 57.30 | 67.19 | 95.06 |
| Sorghum straw | 87.41 ± 1.68 | 5.77 ± 0.24 | 2.93 ± 0.47 | 45.00 | 89.53 | 90.75 |
| Rape straw | 67.58 ± 0.35 | 18.33 ± 0.26 | 0.52 ± 0.18 | 41.90 | 54.86 | 58.15 |
| Wheat bran | 73.97 ± 1.79 | 16.53 ± 0.55 | 0.57 ± 0.10 | 33.40 | 69.31 | 51.06 |
| Walnut green shell | 58.44 ± 0.41 | 28.64 ± 0.21 | 0.18 ± 0.05 | 39.40 | 59.68 | 29.22 |
| Sunflower disk | 76.57 ± 2.22 | 13.55 ± 0.16 | 0.88 ± 0.11 | 33.00 | 68.49 | 79.93 |
| Rice hull | 72.59 ± 0.98 | 17.16 ± 0.29 | 5.95 ± 0.20 | 58.50 | 57.35 | 40.06 |
| Bamboo powder | 76.86 ± 2.57 | 20.43 ± 0.11 | 0.13 ± 0.04 | 64.70 | 52.31 | 44.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Liu, J.; Li, M.; Chang, J.; Sun, L.; Zhu, J. A Novel Choline Alkali–Thiourea Pretreatment for Enhanced Enzymatic Hydrolysis of Reed Straw. Catalysts 2025, 15, 1003. https://doi.org/10.3390/catal15111003
Gong L, Liu J, Li M, Chang J, Sun L, Zhu J. A Novel Choline Alkali–Thiourea Pretreatment for Enhanced Enzymatic Hydrolysis of Reed Straw. Catalysts. 2025; 15(11):1003. https://doi.org/10.3390/catal15111003
Chicago/Turabian StyleGong, Lei, Jinchun Liu, Menghao Li, Jiaying Chang, Liuchang Sun, and Jie Zhu. 2025. "A Novel Choline Alkali–Thiourea Pretreatment for Enhanced Enzymatic Hydrolysis of Reed Straw" Catalysts 15, no. 11: 1003. https://doi.org/10.3390/catal15111003
APA StyleGong, L., Liu, J., Li, M., Chang, J., Sun, L., & Zhu, J. (2025). A Novel Choline Alkali–Thiourea Pretreatment for Enhanced Enzymatic Hydrolysis of Reed Straw. Catalysts, 15(11), 1003. https://doi.org/10.3390/catal15111003
