Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of PdCuene Nanocatalysts
3.3. Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yao, M.-S.; He, Y.; Du, S. Recent advances of electrocatalysts and electrodes for direct formic acid fuel cells: From Nano to meter scale challenges. Nano-Micro Lett. 2025, 17, 148. [Google Scholar] [CrossRef]
- Tang, J.; Tian, N.; Xiao, C.; Zhou, Z. Morphological transformation of Pt nanocrystals by an electrochemical method in alkaline media and performance of ethanol electrooxidation. Inorg. Chem. Front. 2025, in press. [Google Scholar] [CrossRef]
- Zhan, C.; Bu, L.; Sun, H.; Huang, X.; Zhu, Z.; Yang, T.; Ma, H.; Li, L.; Wang, Y.; Geng, H.; et al. Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 2022, 62, e202213783. [Google Scholar] [CrossRef]
- Yu, L.; Li, B.; Xue, R.; Wang, Q.; Tai, X.; Liu, L.; Zhang, Y.; Zhou, T.; Yang, X.; Lv, Y.; et al. Interface engineering of PtCuMn nanoframes with abundant defects for efficient electrooxidation of liquid fuels. Fuel Process. Technol. 2022, 236, 107434. [Google Scholar] [CrossRef]
- Dong, C.; Wang, X.; Zhu, Z.; Zhan, C.; Lin, X.; Bu, L.; Ye, J.; Wang, Y.; Liu, W.; Huang, X. Highly selective synthesis of monoclinic-phased platinum–tellurium nanotrepang for direct formic acid oxidation catalysis. J. Am. Chem. Soc. 2023, 145, 15393–15404. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Hu, X.; Fu, G.; Xu, L.; Lee, J.M.; Tang, Y. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 2018, 14, 1703940. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Schimmenti, R.; Zhu, S.; Venkatraman, K.; Chen, R.; Chi, M.; Shao, M.; Mavrikakis, M.; Xia, Y. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556–2568. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; An, W.; Feng, Y.; Wang, Z.; Zhou, J.; Hur, S.H. Bimetallic Pd-based surface alloys promote electrochemical oxidation of formic acid: Mechanism, kinetics and descriptor. J. Power Sources 2020, 451, 227830. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, H.-J.; Feng, Y.-G.; Wu, J.-H.; Wang, A.-J.; Huang, H.; Feng, J.-J. Three-dimensional hierarchical urchin-like PdCuPt nanoassembles with zigzag branches: A highly efficient and durable electrocatalyst for formic acid oxidation reaction. Appl. Surf. Sci. 2020, 510, 145480. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Zhang, Z.; Wan, M.; Guo, H.; Li, D. An active catalyst system based on Pd (0) and a phosphine-based bulky ligand for the synthesis of thiophene-containing conjugated polymers. Front. Chem. 2021, 9, 743091. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.B.; Wang, M.F.; Zhang, L.F.; Li, N.J.; Qian, T.; Yan, C.L.; Lu, J.M. Quaternary medium-entropy alloy metallene with strong charge polarization for highly selective urea electrosynthesis from carbon dioxide and nitrate. ACS Nano 2025, 19, 7273–7282. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Y.; Cao, Z.; Xu, L.; He, J.; Zhu, Z.; Lian, L.; Luo, X.; Yang, Z.; Chen, M. Oxidation of toluene over the Pt-embedded mesoporous CeO2 hollow nanospheres with advanced catalytic performances. Inorg. Chem. 2024, 63, 19972–19990. [Google Scholar] [CrossRef]
- Luo, M.C.; Zhao, Z.L.; Zhang, Y.L.; Sun, Y.J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.N.; et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, Q.; Shan, B.; Wang, W.; Qi, Y.; Tai, X.; Wang, X.; Zheng, D.; Yan, H.; Ying, B.; et al. Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. Chim. Sin. 2023, 39, 2303012. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, T.; Wang, Y.; Zhang, J.; Luo, E.; Xiao, H.; Zhao, M.; Zhang, L.; Jia, J. Intermetallic synergy in PdCuCo catalysts boosts C―C bond cleavage of oolyalcohol electrooxidation. Adv. Funct. Mater. 2025, 35, 2419815. [Google Scholar] [CrossRef]
- Ma, H.; Yuan, S.; Li, S.; Wang, J.; Zhang, H.; Zhang, Y.; Yang, J.; Sun, J.; Xu, K.; Lei, S. Theoretical screening of efficient TM/GaN single-atom catalysts for electroreduction of nitrate to ammonia. J. Phys. Chem. C 2025, 129, 1953–1960. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, T.; He, J.; Cao, Z.; Jiang, Z. Regulating the atomic ratio of Pt/Ru to enhance CO anti-poisoning of Pt based electrocatalysts toward methanol oxidation reaction. Mol. Catal. 2024, 556, 113927. [Google Scholar] [CrossRef]
- Wang, K.; Wang, M.; Lei, Q.; Zhou, T.; Liu, X.; Cao, Z.; Jiang, Z.; He, J. Strain effect of PtCu alloy aerogel nanocatalysts on the oxygen reduction reaction enhancement. Mol. Catal. 2025, 580, 115121. [Google Scholar] [CrossRef]
- Wang, K.; Liu, P.; Wang, M.; Wei, T.; Lu, J.; Zhao, X.; Jiang, Z.; Yuan, Z.; Liu, X.; He, J. Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chin. Chem. Lett. 2025, 36, 110532. [Google Scholar] [CrossRef]
- Guan, Y.; Su, D.; Zhang, Y.; Zhang, B.; Liu, Y.; Liu, P.; Ban, L.; Qin, T.; Wang, K.; Chu, G.; et al. Ligand effect of PdRu on Pt-enriched surface for glucose complete electro-oxidation to carbon dioxide and abiotic direct glucose fuel cells. ChemSusChem 2024, 18, e202401108. [Google Scholar] [CrossRef]
- Chen, S.-M.; Chen, L.-K.; Tian, N.; Hu, S.-N.; Yang, S.-L.; Shen, J.-F.; Tang, J.-X.; Wu, D.-Y.; Chen, M.-S.; Zhou, Z.-Y.; et al. Double-shell confinement strategy enhancing durability of PtFeTi intermetallic catalysts for the oxygen reduction reaction. ACS Catal. 2024, 14, 16664–16672. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Chen, J.; Yu, H.; Xu, Y.; Deng, K.; Wang, H.; Wang, L. Strong p-d orbital hybridization on PdSn metallene for enhanced electrooxidation of plastic-derived alcohols to glycolic acid. J. Mater. Chem. A 2025, 13, 20439–20446. [Google Scholar] [CrossRef]
- Yuan, Z.; Sun, X.; Wang, H.; Zhao, X.; Jiang, Z. Applications of Ni-based catalysts in photothermal CO2 hydrogenation reaction. Molecules 2024, 29, 3882. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, L.; Wang, L.; Zang, M.; Li, L.; Zhang, Y. MOF-Derived ZrO2-supported bimetallic Pd–Ni catalyst for selective hydrogenation of 1,3-butadiene. Molecules 2024, 29, 2217. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Xin, C.; Zhang, B.; Zhang, G.; Li, S.; Liu, L.; Tai, X. Efficient oxidation of benzyl alcohol into benzaldehyde catalyzed by graphene oxide and reduced graphene oxide supported bimetallic Au–Sn catalysts. RSC Adv. 2023, 13, 23648–23658. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, L.; Zhang, Y.; Peng, Y.; Zang, Z.; Cao, Y.; Li, T.; Zhang, L.; Yan, C.; Qian, T. Alleviating O-intermediates adsorption strength over PdRhCu ternary metallene via ligand effect for enhanced oxygen reduction in practical PEMFCs. J. Phys. Chem. Lett. 2025, 16, 1899–1908. [Google Scholar]
- Qin, Y.L.; Yu, K.D.; Wang, G.; Zhuang, Z.C.; Dou, Y.H.; Wang, D.S.; Chen, Z.B. Adjacent-ligand tuning of atomically precise Cu-Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem. Int. Ed. 2025, 64, e202420817. [Google Scholar]
- Su, Q.; Yu, L. Sub-10 nm PdNi@PtNi Core–Shell Nanoalloys for Efficient Ethanol Electro-Oxidation. Molecules 2024, 29, 4853. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, W.; Zhou, T.; Yan, W.; Wang, K. Design and optimization of nanoporous materials as catalysts for oxygen evolution reaction—A review. Molecules 2024, 29, 4562. [Google Scholar] [CrossRef]
- Wang, K.; He, S.; Zhang, B.; Cao, Z.; Zhou, T.; He, J.; Chu, G. Self-supported 3D PtPdCu nanowires networks for superior glucose electro-oxidation performance. Molecules 2023, 28, 5834. [Google Scholar]
- Zhu, X.; Zhou, E.; Tai, X.; Zong, H.; Yi, J.; Yuan, Z.; Zhao, X.; Huang, P.; Xu, H.; Jiang, Z. g-C3N4 S-Scheme homojunction through Van der Waals interface regulation by intrinsic polymerization tailoring for enhanced photocatalytic H2 evolution and CO2 reduction. Angew. Chem. Int. Ed. 2025, 64, e202425439. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, X.; Yan, M.; Wang, X.; Wei, X.; Zhang, R.; Wang, Y.; Wang, L.; Yin, S. Self-assembled PtNi layered metallene nanobowls for pH-universal electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2024, 667, 175–183. [Google Scholar]
- Xu, Y.; Wang, H.Z.; Ren, T.L.; Yu, H.J.; Deng, K.; Wang, Z.Q.; Wang, H.J.; Wang, L. Alloying effect-triggered electron polarization in PdCu metallene for simultaneous electrocatalytic upcycling of nitrate and polyethylene terephthalate to value-added chemicals. Chem. Eng. J. 2024, 498, 155557. [Google Scholar]
- Zhang, G.; Hui, C.; Yang, Z.; Wang, Q.; Cheng, S.; Zhang, D.; Cui, P.; Shui, J. Hydrogen-induced p-d orbital hybridization and tensile strain of PdGa single-atom alloy metallene boosts complete electrooxidation of ethanol. Appl. Catal. B Environ. 2024, 342, 123377. [Google Scholar] [CrossRef]
- Li, K.; Jing, R.; Ma, S.; Li, Y.; Tian, X.; Cao, S.; Zhao, X.; Wang, L. Light-controlled recovery and recycling of Pd nanoparticles with application in the semihydrogenation of phenylacetylene. Arab. J. Chem. 2025, 18, 1422024. [Google Scholar] [CrossRef]
- Gao, X.; Cao, L.; Chang, Y.; Yuan, Z.; Zhang, S.; Liu, S.; Zhang, M.; Fan, H.; Jiang, Z. Improving the CO2 hydrogenation activity of photocatalysts via the synergy between surface frustrated lewis pairs and the CuPt alloy. ACS Sustain. Chem. Eng. 2023, 11, 5597–5607. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, X.; Xing, W.; Yuan, Z.; Wang, K.; Zhang, Q.; Shan, Y.; Liu, J.; Ju, L.; Jiang, Z.; et al. Cu3Pt1 alloys confined by penta-coordinate Al3+ on Al2O3 realize CO oxidation at room temperature. Mol. Catal. 2025, 570, 114664. [Google Scholar]
- Zhao, X.; Zhou, X.; Xia, Y.; Xu, Z.; Song, M.; Wang, Z.; Guo, Q.; Jiang, Z. Realizing the high loading amount of active Cu on Al2O3 to boost its CO catalytic oxidation. J. Colloid Interface Sci. 2024, 673, 669–678. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Wu, Q.; Li, L.; Tai, X. Cu3N nanowire array as a high-efficiency and durable electrocatalyst for oxygen evolution reaction. Dalton Trans. 2019, 48, 5131–5134. [Google Scholar] [CrossRef]
- Zhang, H.; Su, Q. Recent advances of indium-based sulfides in photocatalytic CO2 reduction. ACS Omega 2025, 10, 8793–8815. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, X.; Liu, L.; Jiang, S.; Li, Y.; Guo, L.; Yan, S.; Tai, X. Heterogeneous bimetallic Cu–Ni nanoparticle-supported catalysts in the selective oxidation of benzyl alcohol to benzaldehyde. Catalysts 2019, 9, 538. [Google Scholar]
- Xu, X.; Chen, S.; Chen, P.; Guo, K.; Yu, X.; Tang, J.; Lu, W.; Miao, X. Cation vacancy modulated Cu3P-CoP heterostructure electrocatalyst for boosting hydrogen evolution at high current densities and coupling Zn-H2O battery. J. Colloid Interface Sci. 2024, 674, 624–633. [Google Scholar]
- Chen, X.; Zhao, J.; Ren, B.; Xin, C.; He, L.; Li, Y. Silicification-engineered robust copper catalysts for hydrogenation. J. Phys. Chem. C 2025, 129, 7248–7254. [Google Scholar] [CrossRef]
- Chen, X.; Granda-Marulanda, L.P.; McCrum, I.T.; Koper, M.T.M. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 2022, 13, 38. [Google Scholar] [CrossRef]
- Shen, T.; Chen, S.; Zeng, R.; Gong, M.; Zhao, T.; Lu, Y.; Liu, X.; Xiao, D.; Yang, Y.; Hu, J.; et al. Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic. ACS Catal. 2020, 10, 9977–9985. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Z.; Liu, X.; Liu, B.; Liu, J.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Tunable periodically ordered mesoporosity in Palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem. 2020, 59, 5092–5101. [Google Scholar]
- Mou, M.; Wang, Y.; Yu, W.; Jiang, H.; Zhang, S.; Zhao, Y.; Ma, J.; Yan, L.; Kong, X.; Zhao, X. General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2025, 685, 988–997. [Google Scholar]
- Zhou, T.; Cao, Z.; Tai, X.; Yu, L.; Ouyang, J.; Li, Y.; Lu, J. Hierarchical Co(OH)2 dendrite enriched with oxygen vacancies for promoted electrocatalytic oxygen evolution reaction. Polymers 2022, 14, 1510. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, W.; Ma, L.; Tang, J.; Lu, W.; Li, J.; Zhang, J.; Xu, X. Interfacial engineering of a CoSe@NiFe heterostructure electrocatalyst for high-efficiency water and urea oxidation. Green Chem. 2025, 27, 731–742. [Google Scholar]
- Ren, H.; Zhang, J.; Hu, T.; Li, Y.; Zhao, H.; Luo, E.; Xiao, H.; Zhao, M.; Tang, J.; Jia, J. An Fe3S4/Ni3S2 heterostructure realizing highly efficient electrocatalysis of ethylene glycol and alkaline electrolyte to produce high value-added chemicals and hydrogen. Green Chem. 2025, 27, 10711–10722. [Google Scholar]
- Bao, Y.; Liu, H.; Liu, Z.; Wang, F.; Feng, L. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl. Catal. B Environ. 2020, 274, 119106. [Google Scholar]
- Wang, H.; Li, Y.; Li, C.; Wang, Z.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Hyperbranched PdRu nanospine assemblies: An efficient electrocatalyst for formic acid oxidation. J. Mater. Chem. A 2018, 6, 17514–17518. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, S.; Liao, F.; Sun, J.; Dang, Q.; Shao, M.; Kang, Z. Pd nanoparticles with twin structures on F-doped graphene for formic acid oxidation. ChemCatChem 2019, 12, 504–509. [Google Scholar]
- Li, F.; Xue, Q.; Ma, G.; Li, S.; Hu, M.; Yao, H.; Wang, X.; Chen, Y. Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. J. Power Sources 2020, 450, 227615. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, S.; Ren, T.; Li, C.; Yin, S.; Wang, Z.; Li, X.; Wang, L.; Wang, H. A quaternary metal–metalloid–nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 2020, 8, 2424–2429. [Google Scholar]
- Bao, Y.; Zha, M.; Sun, P.; Hu, G.; Feng, L. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748–754. [Google Scholar] [CrossRef]
- Mondal, S.; Kumar, M.M.; Raj, C.R. Electrochemically dealloyed Cu–Pt nanostructures for oxygen reduction and formic acid oxidation. ACS Appl. Nano Mater. 2021, 4, 13149–13157. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, M.; Yu, S.; Ren, T.; Ren, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chem. Eng. J. 2021, 421, 127751. [Google Scholar]
- Yang, B.; Zhang, W.; Hu, S.; Liu, C.; Wang, X.; Fan, Y.; Jiang, Z.; Yang, J.; Chen, W. Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J. Colloid Interface Sci. 2021, 600, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Jiang, Y.C.; He, J.W.; Li, F.M.; Ding, Y.; Chen, P.; Chen, Y. Porous palladium phosphide nanotubes for formic acid electrooxidation. Carbon Energy 2022, 4, 283–293. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Zhu, X.; Zhang, T.; Ye, D.D.; Chen, R.; Liao, Q. Novel superaerophobic anode with fern-shaped Pd nanoarray for high-performance direct formic acid fuel cell. Adv. Funct. Mater. 2022, 32, 2201872. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, J.; Xie, H.; Zhang, S.; Zhang, J.; Sun, S.; Luo, P.; Lin, M.; Wang, S.; Pan, Z.; et al. Hydrogen intercalation-induced crystallization of ternary PdNiP alloy nanoparticles for direct formic acid fuel cells. Adv. Energy Mater. 2023, 13, 2203893. [Google Scholar] [CrossRef]
- Li, Y.; Yan, Y.; Yao, M.-S.; Wang, F.; Li, Y.; Collins, S.M.; Chiu, Y.-L.; Du, S. Porous electrodes from self-assembled 3D jointed Pd polyhedra for direct formic acid fuel cells. Chem. Eng. J. 2023, 462, 142244. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, H.; Wang, J.; Chang, L.; Gao, Y.; Liu, W.; Tang, Z. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 2023, 5, 8392. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Cao, Z.; He, J. Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction. Catalysts 2025, 15, 967. https://doi.org/10.3390/catal15100967
Wang K, Cao Z, He J. Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction. Catalysts. 2025; 15(10):967. https://doi.org/10.3390/catal15100967
Chicago/Turabian StyleWang, Kaili, Zhen Cao, and Jia He. 2025. "Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction" Catalysts 15, no. 10: 967. https://doi.org/10.3390/catal15100967
APA StyleWang, K., Cao, Z., & He, J. (2025). Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction. Catalysts, 15(10), 967. https://doi.org/10.3390/catal15100967