Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications
Abstract
1. Introduction
2. Systematic Review Methodology
3. PFAS: Chemistry, Properties, and Environmental Concerns
4. Fundamentals of Photoassisted Processes for PFAS Removal
4.1. Direct Photolysis of PFAS
4.2. Heterogeneous Photocatalysis
4.3. Light-Activated Persulfate Oxidation
4.4. Photo-Fenton and Modified Fenton Systems
4.5. Use of Persulfate Activation Under Light Irradiation (UV/PS, Visible Light/PS)
4.6. General Considerations and Mechanistic Insights
4.7. Advantages, Limitations, and Recent Advances in Photocatalyst Design
5. Advanced Photocatalytic Processes
5.1. Fundamentals and Mechanistic Pathways
5.2. Photocatalyst Systems and Performance Comparisons
5.3. Advantages, Limitations, Perspectives and Future Directions in Advanced Photolysis of PFAS
6. Recent Trends and Emerging Materials
6.1. Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) in Photoassisted PFAS Removal
6.2. Carbon-Based Photocatalysts: Graphene Derivatives and Biochar-Based Materials
6.3. Engineered Nanocomposites for Enhanced PFAS Degradation
6.4. Perspectives on Emerging Materials
6.5. Challenges and Limitations for Industrial Implementation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alsadik, A.; Akintunde, O.O.; Habibi, H.R.; Achari, G. PFAS in Water Environments: Recent Progress and Challenges in Monitoring, Toxicity, Treatment Technologies, and Post-Treatment Toxicity. Environ. Syst. Res. 2025, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Eklund, A.; Taj, T.; Dunder, L.; Lind, P.M.; Lind, L.; Salihovic, S. Longitudinal and Cross-Sectional Analysis of Perfluoroalkyl Substances and Kidney Function. J. Expo. Sci. Environ. Epidemiol. 2025, 1–9. [Google Scholar] [CrossRef]
- Peng, S.-Y.; Yang, Y.-D.; Tian, R.; Lu, N. Critical New Insights into the Interactions of Hexafluoropropylene Oxide-Dimer Acid (GenX or HFPO-DA) with Albumin at Molecular and Cellular Levels. J. Environ. Sci. 2025, 149, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.C.; Ludtke, S.; Thackray, C.; Pickard, H.M.; Haque, F.; Dassuncao, C.; Endo, S.; Schaider, L.; Sunderland, E.M. Binding of Per-and Polyfluoroalkyl Substances (PFAS) to Serum Proteins: Implications for Toxicokinetics in Humans. Environ. Sci. Technol. 2024, 58, 1055–1063. [Google Scholar] [CrossRef]
- Peng, M.; Xu, Y.; Wu, Y.; Cai, X.; Zhang, W.; Zheng, L.; Du, E.; Fu, J. Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches. Toxics 2024, 12, 43. [Google Scholar] [CrossRef]
- Wei, W.; Chen, Q.; Zhang, J.; Wang, H. Prenatal Exposure to Perfluoroalkyl and Polyfluoroalkyl Substances and Childhood Bone Mineral Density: A Prospective Birth Cohort Study. Int. J. Hyg. Environ. Health 2025, 263, 114459. [Google Scholar] [CrossRef]
- Ríos-Bonilla, K.M.; Aga, D.S.; Lee, J.; König, M.; Qin, W.; Cristobal, J.R.; Atilla-Gokcumen, G.E.; Escher, B.I. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. Environ. Sci. Technol. 2024, 58, 16774–16784. [Google Scholar] [CrossRef]
- Lang-Koetz, C.; Hutschek, U.; Heil, M. PFAS: Application, Technical Functions and Substitution Possibilities in the Industry: Final Report of the Research Project on Behalf of the Thinktank Industrial Resource Strategies; Thinktank Industrial Resource Strategies: Karlsruhr, Germany, 2024. [Google Scholar]
- Liu, C.J.; McKay, G.; Jiang, D.; Tenorio, R.; Cath, J.T.; Amador, C.; Murray, C.C.; Brown, J.B.; Wright, H.B.; Schaefer, C. Pilot-Scale Field Demonstration of a Hybrid Nanofiltration and UV-Sulfite Treatment Train for Groundwater Contaminated by per-and Polyfluoroalkyl Substances (PFASs). Water Res. 2021, 205, 117677. [Google Scholar] [CrossRef]
- Weng, B.; Zhang, M.; Lin, Y.; Yang, J.; Lv, J.; Han, N.; Xie, J.; Jia, H.; Su, B.-L.; Roeffaers, M.; et al. Photo-Assisted Technologies for Environmental Remediation. Nat. Rev. Clean Technol. 2025, 1, 201–215. [Google Scholar] [CrossRef]
- Leonello, D.; Fendrich, M.A.; Parrino, F.; Patel, N.; Orlandi, M.; Miotello, A. Light-Induced Advanced Oxidation Processes as Pfas Remediation Methods: A Review. Appl. Sci. 2021, 11, 8458. [Google Scholar] [CrossRef]
- Paul Guin, J.; Sullivan, J.A.; Thampi, K.R. Challenges Facing Sustainable Visible Light Induced Degradation of Poly- and Perfluoroalkyls (PFA) in Water: A Critical Review. ACS Eng. Au 2022, 2, 134–150. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, T.; Yang, X.; Ding, S.; Ma, M. Insights into Photo/Electrocatalysts for the Degradation of Per- and Polyfluoroalkyl Substances (PFAS) by Advanced Oxidation Processes. Catalysts 2023, 13, 1308. [Google Scholar] [CrossRef]
- Li, X.; Hou, M.; Zhang, F.; Ji, Z.; Cai, Y.; Shi, Y. Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-Based Accumulation Differences, Adverse Outcomes, and Mechanisms. Environ. Sci. Technol. 2025, 59, 1469–1486. [Google Scholar] [CrossRef] [PubMed]
- Dolatabad, A.A.; Zhang, X.; Mai, J.; Kubátová, A.; Cao, J.; Xiao, F. Thermal Decomposition of Fluoropolymers: Stability, Decomposition Products, and Possible PFAS Release. J. Hazard. Mater. 2025, 496, 139322. [Google Scholar] [CrossRef]
- Bentel, M.J.; Yu, Y.; Xu, L.; Li, Z.; Wong, B.M.; Men, Y.; Liu, J. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environ. Sci. Technol. 2019, 53, 3718–3728. [Google Scholar] [CrossRef]
- Secundo, L.; Metrangolo, P.; Dichiarante, V. Current Approaches in the Classification of PFAS: An Overview. Chem. Asian J. 2025, 20, e202500127. [Google Scholar] [CrossRef]
- Zhao, P.; Xia, X.; Dong, J.; Xia, N.; Jiang, X.; Li, Y.; Zhu, Y. Short- and Long-Chain Perfluoroalkyl Substances in the Water, Suspended Particulate Matter, and Surface Sediment of a Turbid River. Sci. Total Environ. 2016, 568, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, T.; Bao, J.; Hu, X.; Zhao, X.; Shao, L.; Li, C.; Lu, M. A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. Appl. Sci. 2022, 12, 1941. [Google Scholar] [CrossRef]
- Carnero, A.R.; Lestido-Cardama, A.; Loureiro, P.V.; Barbosa-Pereira, L.; de Quirós, A.R.B.; Sendón, R. Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (Pfas) in Food Contact Materials (Fcm) and Its Migration to Food. Foods 2021, 10, 1443. [Google Scholar] [CrossRef]
- Khan, B.; Burgess, R.M.; Cantwell, M.G. Occurrence and Bioaccumulation Patterns of Per- and Polyfluoroalkyl Substances (PFAS) in the Marine Environment. ACS EST Water 2023, 3, 1243–1259. [Google Scholar] [CrossRef]
- Zhang, Z.; Sarkar, D.; Biswas, J.K.; Datta, R. Biodegradation of Per- and Polyfluoroalkyl Substances (PFAS): A Review. Bioresour. Technol. 2022, 344, 126223. [Google Scholar] [CrossRef]
- Ehsan, M.N.; Riza, M.; Pervez, M.N.; Li, C.W.; Zorpas, A.A.; Naddeo, V. PFAS Contamination in Soil and Sediment: Contribution of Sources and Environmental Impacts on Soil Biota. Case Stud. Chem. Environ. Eng. 2024, 9, 100643. [Google Scholar] [CrossRef]
- Faust, J.A. PFAS on Atmospheric Aerosol Particles: A Review. Environ. Sci. Process. Impacts 2022, 25, 133–150. [Google Scholar] [CrossRef]
- Xie, Z.; Kallenborn, R. Legacy and Emerging Per- and Poly-Fluoroalkyl Substances in Polar Regions. Curr. Opin. Green Sustain. Chem. 2023, 42, 100840. [Google Scholar] [CrossRef]
- MacMillan, D.K.; Wetmore, B.A.; Dasgupta, S.; Baldwin, W.S. Closing the Gaps in Understanding PFAS Toxicology and Metabolism. Toxics 2025, 13, 19. [Google Scholar] [CrossRef]
- Sodani, K.; Ter Braak, B.; Hartvelt, S.; Boelens, M.; Jamalpoor, A.; Mukhi, S. Toxicological Mode-of-Action and Developmental Toxicity of Different Carbon Chain Length PFAS. Toxicol. Lett. 2025, 405, 59–66. [Google Scholar] [CrossRef]
- Nayak, S.; Sahoo, G.; Das, I.I.; Mohanty, A.K.; Kumar, R.; Sahoo, L.; Sundaray, J.K. Poly- and Perfluoroalkyl Substances (PFAS): Do They Matter to Aquatic Ecosystems? Toxics 2023, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Kucharzyk, K.H.; Darlington, R.; Benotti, M.; Deeb, R.; Hawley, E. Novel Treatment Technologies for PFAS Compounds: A Critical Review. J. Environ. Manag. 2017, 204, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lee, C.S.; Zhang, Y.; Das, R.; Akter, F.; Venkatesan, A.K.; Hsiao, B.S. Efficient Removal of Short-Chain and Long-Chain PFAS by Cationic Nanocellulose. J. Mater. Chem. A 2023, 11, 9868–9883. [Google Scholar] [CrossRef]
- Smaili, H.; Ng, C. Adsorption as a Remediation Technology for Short-Chain per- and Polyfluoroalkyl Substances (PFAS) from Water—A Critical Review. Environ. Sci. Water Res. Technol. 2022, 9, 344–362. [Google Scholar] [CrossRef]
- Das, S.; Ronen, A. A Review on Removal and Destruction of Per-and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes 2022, 12, 662. [Google Scholar] [CrossRef] [PubMed]
- Walker, T. Occurrences of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment and Their Oxidative Degradation By Modified Fenton Treatment. In Proceedings of the ECS Meeting Abstracts, Honolulu, HI, USA, 6–11 October 2024; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2024; Volume MA2024-02, p. 5122. [Google Scholar]
- Longendyke, G.K.; Katel, S.; Wang, Y. PFAS Fate and Destruction Mechanisms during Thermal Treatment: A Comprehensive Review. Environ. Sci. Process. Impacts 2022, 24, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Tshangana, C.S.; Nhlengethwa, S.T.; Glass, S.; Denison, S.; Kuvarega, A.T.; Nkambule, T.T.I.; Mamba, B.B.; Alvarez, P.J.J.; Muleja, A.A. Technology Status to Treat PFAS-Contaminated Water and Limiting Factors for Their Effective Full-Scale Application. npj Clean Water 2025, 8, 41. [Google Scholar] [CrossRef]
- Jassby, D.; Cwiertny, D.; Wong, B. FINAL REPORT A Combined Photo/Electrochemical Reductive Pathway Towards Enhanced PFAS Degradation Distribution Statement A; SERDP: Alexandria, VA, USA, 2020. [Google Scholar]
- Xin, X.; Kim, J.; Ashley, D.C.; Huang, C.H. Degradation and Defluorination of Per- and Polyfluoroalkyl Substances by Direct Photolysis at 222 Nm. ACS EST Water 2023, 3, 2776–2785. [Google Scholar] [CrossRef]
- Banayan Esfahani, E.; Mohseni, M. Fluence-Based Photo-Reductive Decomposition of PFAS Using Vacuum UV (VUV) Irradiation: Effects of Key Parameters and Decomposition Mechanism. J. Environ. Chem. Eng. 2022, 10, 107050. [Google Scholar] [CrossRef]
- Banayan Esfahani, E. Photodegradation of Per-and Poly-Fluoroalkyl Substances (PFAS) Using Vacuum-UV (VUV) Radiation; University of British Columbia: Vancouver, BC, Canada, 2022. [Google Scholar]
- Jin, L.; Zhang, P.; Shao, T.; Zhao, S. Ferric Ion Mediated Photodecomposition of Aqueous Perfluorooctane Sulfonate (PFOS) under UV Irradiation and Its Mechanism. J. Hazard. Mater. 2014, 271, 9–15. [Google Scholar] [CrossRef]
- Hori, H.; Hayakawa, E.; Einaga, H.; Kutsuna, S.; Koike, K.; Ibusuki, T.; Kiatagawa, H.; Arakawa, R. Decomposition of Environmentally Persistent Perfluorooctanoic Acid in Water by Photochemical Approaches. Environ. Sci. Technol. 2004, 38, 6118–6124. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Koike, K.; Kutsuna, S.; Murayama, M.; Yoshimoto, A.; Arakawa, R. Photocatalytic Decomposition of a Perfluoroether Carboxylic Acid by Tungstic Heteropolyacids in Water. Appl. Catal. B Environ. 2008, 82, 58–66. [Google Scholar] [CrossRef]
- Bao, Y.; Deng, S.; Jiang, X.; Qu, Y.; He, Y.; Liu, L.; Chai, Q.; Mumtaz, M.; Huang, J.; Cagnetta, G. Degradation of PFOA Substitute: GenX (HFPO–DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environ. Sci. Technol. 2018, 52, 11728–11734. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, B.; Pan, H.; Wei, Y.; Yang, Y.; Xu, N.; Chen, B.; Mohseni, M.; Esfahani, E.B. Total Organic Fluorine (TOF) Analysis by Completely Converting TOF into Fluoride with Vacuum Ultraviolet. J. Hazard. Mater. 2022, 429, 128389. [Google Scholar] [CrossRef]
- Vaalgamaa, S.; Vähätalo, A.V.; Perkola, N.; Huhtala, S. Photochemical Reactivity of Perfluorooctanoic Acid (PFOA) in Conditions Representing Surface Water. Sci. Total Environ. 2011, 409, 3043–3048. [Google Scholar] [CrossRef]
- Taniyasu, S.; Yamashita, N.; Yamazaki, E.; Petrick, G.; Kannan, K. The Environmental Photolysis of Perfluorooctanesulfonate, Perfluorooctanoate, and Related Fluorochemicals. Chemosphere 2013, 90, 1686–1692. [Google Scholar] [CrossRef]
- Nabintu Kajoka, C.; Brosillon, S.; Reibel, C.; Diop, Y.K.; Oliveira, M.; Rocher, V.; Chebbo, G.; Gasperi, J.; Le Roux, J. Removal of Pharmaceuticals through UV-C/Performic Acid Advanced Oxidation Process: Kinetics and Identification of Reactive Species. J. Hazard. Mater. 2025, 495, 139016. [Google Scholar] [CrossRef]
- Schrama, F.R.A.; Massimi, S.E.; Dooley, M.R.; Trewyn, B.G.; Vyas, S.; Richards, R.M. Light-Driven Interfaces for PFAS Detection and Destruction. RSC Appl. Interfaces 2024, 1, 833–845. [Google Scholar] [CrossRef]
- Jiang, Z.; Adjei, D.; Denisov, S.A.; Mostafavi, M.; Ma, J. Transient Kinetics of Short-Chain Perfluoroalkyl Sulfonate with Radiolytic Reducing Species. Environ. Sci. Technol. Lett. 2023, 10, 59–65. [Google Scholar] [CrossRef]
- Umar, M. Reductive and Oxidative UV Degradation of PFAS—Status, Needs and Future Perspectives. Water 2021, 13, 3185. [Google Scholar] [CrossRef]
- Cui, J.; Gao, P.; Deng, Y. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environ. Sci. Technol. 2020, 54, 3752–3766. [Google Scholar] [CrossRef] [PubMed]
- Meegoda, J.N.; Bezerra de Souza, B.; Casarini, M.M.; Kewalramani, J.A. A Review of PFAS Destruction Technologies. Int. J. Environ. Res. Public Health 2022, 19, 16397. [Google Scholar] [CrossRef] [PubMed]
- Glass, S.; Santiago-Cruz, H.A.; Chen, W.; Zhang, T.; Guelfo, J.; Rittmann, B.; Senftle, T.P.; Vikesland, P.; Villagrán, D.; Wang, H.; et al. Merits, Limitations and Innovation Priorities for Heterogeneous Catalytic Platforms to Destroy PFAS. Nat. Water 2025, 3, 644–654. [Google Scholar] [CrossRef]
- Saetchnikov, A.V.; Tcherniavskaia, E.A.; Saetchnikov, V.A.; Ostendorf, A. Detection of Per- and Polyfluoroalkyl Water Contaminants with a Multiplexed 4D Microcavities Sensor. Photonics Res. 2023, 11, A88–A96. [Google Scholar] [CrossRef]
- Ali, Z.A.; Yamijala, S.S.; Wong, B.M. A Review of Emerging Photoinduced Degradation Methods for Per- and Polyfluoroalkyl Substances in Water. Curr. Opin. Chem. Eng. 2023, 41, 100947. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P. A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Zelekew, O.A.; Wang, Z.; Gu, Y.; Wu, Y.-N. Recent Progress on Photoactive Heterogeneous Photocatalysts for the Degradation of Per-and Polyfluoroalkyl Substances (PFAS): Mechanisms, DFT Calculations, Limitations, and Future Prospects. J. Environ. Chem. Eng. 2024, 12, 113323. [Google Scholar] [CrossRef]
- Fu, C.; Xu, X.; Zheng, C.; Liu, X.; Zhao, D.; Qiu, W. Photocatalysis of Aqueous PFOA by Common Catalysts of In2O3, Ga2O3, TiO2, CeO2 and CdS: Influence Factors and Mechanistic Insights. Environ. Geochem. Health 2022, 44, 2943–2953. [Google Scholar] [CrossRef] [PubMed]
- McQueen, A.D.; Tedrow, O.N.; Ballentine, M.L.; Kennedy, A.J. Demonstration of Photocatalytic Degradation of Per- and Polyfluoroalkyl Substances (PFAS) in Landfill Leachate Using 3D Printed TiO2 Composite Tiles. Water. Air. Soil Pollut. 2022, 233, 444. [Google Scholar] [CrossRef]
- Chowdhury, N.; Choi, H. Photocatalytic Degradation of Perfluorooctanoic Acid on Pb-Doped TiO2 Coated with Reduced Graphene Oxide. Water Environ. Res. 2023, 95, e10871. [Google Scholar] [CrossRef]
- Peng, Y.-P.; Chen, H.; Huang, C.P. The Synergistic Effect of Photoelectrochemical (PEC) Reactions Exemplified by Concurrent Perfluorooctanoic Acid (PFOA) Degradation and Hydrogen Generation over Carbon and Nitrogen Codoped TiO2 Nanotube Arrays (CN-TNTAs) Photoelectrode. Appl. Catal. B Environ. 2017, 209, 437–446. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Luo, P.; Hu, Q. Removal of Perfluorooctanoic Acid by MWCNT-Modified Carbon-Doped Titanium Dioxide in a Peroxymonosulfate/Simulated Sunlight System. Appl. Surf. Sci. 2023, 614, 156251. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, J.; Song, S.; Wang, J.; Li, Y.; Liu, R.; Shen, Y. TiO2 Quantum Dots Loaded Sulfonated Graphene Aerogel for Effective Adsorption-Photocatalysis of PFOA. Sci. Total Environ. 2020, 698, 134275. [Google Scholar] [CrossRef]
- Duan, L.; Wang, B.; Heck, K.N.; Clark, C.A.; Wei, J.; Wang, M.; Metz, J.; Wu, G.; Tsai, A.-L.; Guo, S. Titanium Oxide Improves Boron Nitride Photocatalytic Degradation of Perfluorooctanoic Acid. Chem. Eng. J. 2022, 448, 137735. [Google Scholar] [CrossRef]
- Yao, X.; Zuo, J.; Wang, Y.-J.; Song, N.-N.; Li, H.-H.; Qiu, K. Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid by Mesoporous Sb2O3/TiO2 Heterojunctions. Front. Chem. 2021, 9, 690520. [Google Scholar] [CrossRef]
- Lashuk, B.; Pineda, M.; AbuBakr, S.; Boffito, D.; Yargeau, V. Application of Photocatalytic Ozonation with a WO3/TiO2 Catalyst for PFAS Removal under UVA/Visible Light. Sci. Total Environ. 2022, 843, 157006. [Google Scholar] [CrossRef]
- Samuel, M.S.; Shang, M.; Niu, J. Photocatalytic Degradation of Perfluoroalkyl Substances in Water by Using a Duo-Functional Tri-Metallic-Oxide Hybrid Catalyst. Chemosphere 2022, 293, 133568. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 2012, 46, 5528–5534. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Shao, T.; Li, X. In2O3 Nanoporous Nanosphere: A Highly Efficient Photocatalyst for Decomposition of Perfluorooctanoic Acid. Appl. Catal. B Environ. 2012, 125, 350–357. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Li, J.; Shao, T.; Wang, J.; Jin, L. Synthesis of In2O3 Porous Nanoplates for Photocatalytic Decomposition of Perfluorooctanoic Acid (PFOA). Catal. Commun. 2014, 43, 42–46. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Fang, C.; Li, C. Highly Efficient Degradation of Perfluorooctanoic Acid over a MnOx-modified Oxygen-vacancy-rich In2O3 Photocatalyst. ChemCatChem 2019, 11, 2297–2303. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, J.L.; Altaee, A.; Ahmed, M.B.; Johir, M.A.H.; Ren, J.; Li, X. Improved Photocatalysis of Perfluorooctanoic Acid in Water and Wastewater by Ga2O3/UV System Assisted by Peroxymonosulfate. Chemosphere 2020, 239, 124722. [Google Scholar] [CrossRef] [PubMed]
- Ryou, H.; Yoo, T.H.; Yoon, Y.; Lee, I.G.; Shin, M.; Cho, J.; Cho, B.J.; Hwang, W.S. Hydrothermal Synthesis and Photocatalytic Property of Sn-Doped β-Ga2O3 Nanostructure. ECS J. Solid State Sci. Technol. 2020, 9, 45009. [Google Scholar] [CrossRef]
- Qian, L.; Georgi, A.; Gonzalez-Olmos, R.; Kopinke, F.-D. Degradation of Perfluorooctanoic Acid Adsorbed on Fe-Zeolites with Molecular Oxygen as Oxidant under UV-A Irradiation. Appl. Catal. B Environ. 2020, 278, 119283. [Google Scholar] [CrossRef]
- Luo, D.; Yuan, J.; Zhou, J.; Zou, M.; Xi, R.; Qin, Y.; Shen, Q.; Hu, S.; Xu, J.; Nie, M. Synthesis of Samarium Doped Ferrite and Its Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA). Opt. Mater. 2021, 122, 111636. [Google Scholar] [CrossRef]
- Xu, J.; Wu, M.; Yang, J.; Wang, Z.; Chen, M.; Teng, F. Efficient Photocatalytic Degradation of Perfluorooctanoic Acid by a Wide Band Gap P-Block Metal Oxyhydroxide InOOH. Appl. Surf. Sci. 2017, 416, 587–592. [Google Scholar] [CrossRef]
- Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C.A.; Arredondo, J.; Wang, M.; Senftle, T.P.; Westerhoff, P.; Wen, X. Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environ. Sci. Technol. Lett. 2020, 7, 613–619. [Google Scholar] [CrossRef]
- Lalas, K.; Panaras, G.; Souliotis, M.; Frontistis, Z. Degradation of Micropollutants in Water Matrices Using Light Activated—Persulfate: A Review. J. Environ. Manag. 2025, 373, 123868. [Google Scholar] [CrossRef]
- Uwayezu, J.N.; Carabante, I.; van Hees, P.; Karlsson, P.; Kumpiene, J. Validation of UV/Persulfate as a PFAS Treatment of Industrial Wastewater and Environmental Samples. J. Water Process Eng. 2023, 53, 103614. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Cai, Y.; Yuan, R.; Wang, F.; Qian, Y.; Chen, Z.; Zhou, B.; Chen, H. Efficient Degradation and Defluorination of Perfluorobutyric Acid under UV Irradiation in the Presence of Persulfate. J. Clean. Prod. 2021, 327, 129472. [Google Scholar] [CrossRef]
- Machado, F.; Teixeira, A.C.S.C.; Ruotolo, L.A.M. Critical Review of Fenton and Photo-Fenton Wastewater Treatment Processes over the Last Two Decades. Int. J. Environ. Sci. Technol. 2023, 20, 13995–14032. [Google Scholar] [CrossRef]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Radovanović-Perić, F.; Bafti, A.; Ujević Bošnjak, M.; Markić, M.; Bolanča, T.; Cvetnić, M.; Kučić Grgić, D.; et al. Evaluation of Fenton, Photo-Fenton and Fenton-like Processes in Degradation of PE, PP, and PVC Microplastics. Water 2024, 16, 673. [Google Scholar] [CrossRef]
- Schlesinger, D.R.; McDermott, C.; Le, N.Q.; Ko, J.S.; Johnson, J.K.; Demirev, P.A.; Xia, Z. Destruction of per/Poly-Fluorinated Alkyl Substances by Magnetite Nanoparticle-Catalyzed UV-Fenton Reaction. Environ. Sci. Water Res. Technol. 2022, 8, 2732–2743. [Google Scholar] [CrossRef]
- Yong, Z.Y.; Tey, H.Y.; Yong, E.L.; Othman, M.H.D.; See, H.H. Advanced Oxidation Processes (AOPs) on the Removal of Different Per- and Polyfluoroalkyl Substances (PFAS) Types in Wastewater. In Advanced Technologies for Solid, Liquid, and Gas Waste Treatment; CRC Press: Boca Raton, FL, USA, 2023; pp. 203–220. [Google Scholar]
- Tang, H.; Xiang, Q.; Lei, M.; Yan, J.; Zhu, L.; Zou, J. Efficient Degradation of Perfluorooctanoic Acid by UV–Fenton Process. Chem. Eng. J. 2012, 184, 156–162. [Google Scholar] [CrossRef]
- Barisci, S.; Suri, R. Removal of Polyfluorinated Telomer Alcohol by Advanced Oxidation Processes (AOPs) in Different Water Matrices and Evaluation of Degradation Mechanisms. J. Water Process Eng. 2021, 39, 101745. [Google Scholar] [CrossRef]
- Olatunde, O.C.; Kuvarega, A.T.; Onwudiwe, D.C. Photo Enhanced Degradation of Polyfluoroalkyl and Perfluoroalkyl Substances. Heliyon 2020, 6, e05614. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.M.; Ahmad, M.; Teel, A.L.; Watts, R.J. Degradation of Perfluorooctanoic Acid by Reactive Species Generated through Catalyzed H2O2 Propagation Reactions. Environ. Sci. Technol. Lett. 2014, 1, 117–121. [Google Scholar] [CrossRef]
- Olvera-Vargas, H.; Gore-Datar, N.; Garcia-Rodriguez, O.; Mutnuri, S.; Lefebvre, O. Electro-Fenton Treatment of Real Pharmaceutical Wastewater Paired with a BDD Anode: Reaction Mechanisms and Respective Contribution of Homogeneous and Heterogeneous OH. Chem. Eng. J. 2021, 404, 126524. [Google Scholar] [CrossRef]
- Dos Santos, P.R.; de Oliveira Dourados, M.E.; Sirés, I.; Brillas, E.; Cavalcante, R.P.; Cavalheri, P.S.; Paulo, P.L.; Guelfi, D.R.V.; de Oliveira, S.C.; Gozzi, F. Greywater Treatment by Anodic Oxidation, Photoelectro-Fenton and Solar Photoelectro-Fenton Processes: Influence of Relevant Parameters and Toxicity Evolution. Process Saf. Environ. Prot. 2023, 169, 879–895. [Google Scholar] [CrossRef]
- Yousefi, A.; Omi, F.R.; Yang, L.; Ganiyu, S.O.; Ullah, A.; El-Din, M.G.; Sadrzadeh, M. Innovative Hybrid Approach for Enhanced PFAS Degradation and Removal: Integrating Membrane Distillation, Cathodic Electro-Fenton, and Anodic Oxidation. J. Environ. Manag. 2025, 379, 124818. [Google Scholar] [CrossRef]
- Lee, B.C.Y.; Lim, F.Y.; Loh, W.H.; Ong, S.L.; Hu, J. Emerging Contaminants: An Overview of Recent Trends for Their Treatment and Management Using Light-Driven Processes. Water 2021, 13, 2340. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, H.; Zhang, H.; Zhou, P.; You, J.; Yao, G.; Pan, Z.; Liu, Y.; Lai, B. Heterogeneous Photocatalyst-Driven Persulfate Activation Process under Visible Light Irradiation: From Basic Catalyst Design Principles to Novel Enhancement Strategies. Chem. Eng. J. 2022, 428, 131166. [Google Scholar] [CrossRef]
- Liang, J.; Chen, K.; Duan, X.; Zhao, L.; Qiu, H.; Xu, X.; Cao, X. PH-Dependent Generation of Radical and Nonradical Species for Sulfamethoxazole Degradation in Different Carbon/Persulfate Systems. Water Res. 2022, 224, 119113. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Ge, Y.; Yu, G.; Huang, J. Degradation of Novel PFOA Alternatives in Fluoropolymer Production by UV Activated Persulfate: Efficiency, Mechanism and Structural Effects. J. Hazard. Mater. 2025, 492, 138121. [Google Scholar] [CrossRef] [PubMed]
- Banayan Esfahani, E.; Asadi Zeidabadi, F.; Jafarikojour, M.; Mohseni, M. Photo-Oxidative/Reductive Decomposition of Perfluorooctanoic Acid (PFOA) and Its Common Alternatives: Mechanism and Kinetic Modeling. J. Water Process Eng. 2024, 61, 105332. [Google Scholar] [CrossRef]
- Leung, S.C.E.; Shukla, P.; Chen, D.; Eftekhari, E.; An, H.; Zare, F.; Ghasemi, N.; Zhang, D.; Nguyen, N.T.; Li, Q. Emerging Technologies for PFOS/PFOA Degradation and Removal: A Review. Sci. Total Environ. 2022, 827, 153669. [Google Scholar] [CrossRef]
- Banayan Esfahani, E.; Asadi Zeidabadi, F.; Zhang, S.; Mohseni, M. Photo-Chemical/Catalytic Oxidative/Reductive Decomposition of per- and Poly-Fluoroalkyl Substances (PFAS), Decomposition Mechanisms and Effects of Key Factors: A Review. Environ. Sci. Water Res. Technol. 2022, 8, 698–728. [Google Scholar] [CrossRef]
- Lama, G.; Meijide, J.; Sanromán, A.; Pazos, M. Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts 2022, 12, 344. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Liu, Y.; Ma, Y.; Li, T.; Lin, Y.; Xie, T.; Dong, S. Photo-Fenton Degradation of Emerging Pollutants over Fe-POM Nanoparticle/Porous and Ultrathin g-C3N4 Nanosheet with Rich Nitrogen Defect: Degradation Mechanism, Pathways, and Products Toxicity Assessment. Appl. Catal. B Environ. 2020, 278, 119349. [Google Scholar] [CrossRef]
- Dey, A.K.; Mishra, S.R.; Ahmaruzzaman, M. Solar Light–Based Advanced Oxidation Processes for Degradation of Methylene Blue Dye Using Novel Zn-Modified CeO2@biochar. Environ. Sci. Pollut. Res. 2023, 30, 53887–53903. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Ameta, R.; Ameta, S.C. Photocatalysis: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 1315372398. [Google Scholar]
- Xia, C.; Lim, X.; Yang, H.; Goodson, B.M.; Liu, J. Degradation of Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater Effluents by Photocatalysis for Water Reuse. J. Water Process Eng. 2022, 46, 102556. [Google Scholar] [CrossRef]
- Li, H.; Song, X.; Shan, X.; Liu, F.; Liu, D.; Feng, M.; Xu, X.; Zhang, Q.; Yin, Y.; Cai, Y. Photochemical Degradation of PFAS: Mechanistic Insights and Design Strategies for Homogeneous and Heterogeneous Systems. Small 2025, e06040. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Rentería-Gómez, Á.; Day, G.S.; Smith, M.F.; Yan, T.H.; Ozdemir, R.O.K.; Gutierrez, O.; Sharma, V.K.; Ma, X.; Zhou, H.C. Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal-Organic Frameworks: Key Insights into the Degradation Mechanisms. J. Am. Chem. Soc. 2022, 144, 11840–11850. [Google Scholar] [CrossRef]
- Feng, X.; Liang, J.; Shi, F.; Yan, R.; Jin, Y. Engineering Oxygen-Active Species in La-Doped g-C3N4 for Enhanced Ametryn Degradation: Superoxide Radical Dominated Pathways. J. Environ. Chem. Eng. 2025, 13, 118058. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Ruan, C.L.; Chen, M.Y.; Li, C.X.; Dai, M.; Yin, Z.H.; Meng, C.Z.; Situ, F.M.; Wu, Y.W.; Hu, C.; et al. A Promoted Charge Separation and Transfer System from Fe Single Atoms and g-C3N4 for Efficient Photocatalysis. Rare Met. 2025, 44, 6343–6353. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Y.; Han, M.; Ouyang, Y.; Xia, L.; Huang, X.; Hu, Z.; Li, C. Mechanism Insights into the Facet-Dependent Photocatalytic Degradation of Perfluorooctanoic Acid on BiOCl Nanosheets. Chem. Eng. J. 2021, 425, 130672. [Google Scholar] [CrossRef]
- Yan, C.; Zhong, Z.; Wang, J.; Feng, K.; Xing, D. Enhanced Photocatalytic Defluorination of Perfluorooctanoic Acid through Integrated Hydrogen Atoms/Electrons Reduction and ROS Oxidation with Metal–Organic Framework Heterogeneous Catalysts. Chem. Eng. J. 2025, 513, 163058. [Google Scholar] [CrossRef]
- Zhang, K.; Li, C.; Xu, L.; He, Z.; Zhang, Z.; Sumita; Ghumro, J.A.; Dong, K. MXene and Its Composites Combined with Photocatalytic Degradation of Perfluorooctanoic Acid: Efficiency and Active Species Study. Environ. Res. 2025, 278, 121690. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Duan, L.; Zhang, Z.; Jiang, Y.; Zhang, Q.; Zhou, L.; Yu, G.; Huang, J. Multi-Charge Bridge Transfer Guiding Design of Photocatalyst with Oxygen Defects for Effective Degradation of PFAS in Fluoropolymer Production Wastewater. Chem. Eng. J. 2025, 505, 159124. [Google Scholar] [CrossRef]
- Boonchata, P.; Boontanon, N.; Jindal, V.; Aung, H.K.Z.Z.; Visvanathan, C.; Fujii, S.; Boontanon, S.K. Photocatalytic Degradation of Perfluorooctane Sulfonic Acid and Perfluorooctanoic Acid Using Titanium Dioxide/Graphene Oxide Nanocomposite Immobilized on Polyvinyl Alcohol Film. Case Stud. Chem. Environ. Eng. 2024, 10, 100862. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.; Li, X.; Luo, Y.; Zheng, H.; Li, X.; Chen, L.; Li, F. Adsorption—Photocatalysis Synergistic Removal of Perfluoroalkyl/Polyfluoroalkyl Substances by Reusable Chitin/Polyethylene Imine/O-g-C3N4 Sponges in Water Environments. Chem. Eng. J. 2025, 511, 162006. [Google Scholar] [CrossRef]
- Bertucci, S.; Lova, P. Exploring Solar Energy Solutions for Per- and Polyfluoroalkyl Substances Degradation: Advancements and Future Directions in Photocatalytic Processes. Sol. RRL 2024, 8, 2400116. [Google Scholar] [CrossRef]
- Issaka, E.; Adams, M.; Baffoe, J.; Danso-Boateng, E.; Melville, L.; Fazal, A. Covalent Organic Frameworks: A Review of Synthesis Methods, Properties and Applications for per- and Poly-Fluoroalkyl Substances Removal. Clean Technol. Environ. Policy 2025, 27, 833–860. [Google Scholar] [CrossRef]
- Ge, S.; Wei, K.; Peng, W.; Huang, R.; Akinlabi, E.; Xia, H.; Shahzad, M.W.; Zhang, X.; Xu, B.B.; Jiang, J. A Comprehensive Review of Covalent Organic Frameworks (COFs) and Their Derivatives in Environmental Pollution Control. Chem. Soc. Rev. 2024, 53, 11259–11302. [Google Scholar] [CrossRef]
- Bharti, S. PFAS in Water Systems: A Critical Review on Contamination Pathways, Analytical Methods, and Treatment Technologies. Water Conserv. Sci. Eng. 2025, 10, 89. [Google Scholar] [CrossRef]
- FitzGerald, L.I.; Olorunyomi, J.F.; Singh, R.; Doherty, C.M. Towards Solving the PFAS Problem: The Potential Role of Metal-Organic Frameworks. ChemSusChem 2022, 15, e202201136. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Ma, X.; Shetty, D.; Nadagouda, M.N. Recent Advances in Covalent Organic Frameworks for PFAS Removal: A Comparative Review on 2D and 3D Architectures. Chem. Eng. J. 2025, 519, 164298. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, M.; Wang, L.; Zhuang, S. Recent Advancements in PFAS Adsorptive Removal Using MOFs and COFs: A Review. Rev. Environ. Sci. Biotechnol. 2025, 24, 63–95. [Google Scholar] [CrossRef]
- Lopez-Magano, A.; Jimenez-Almarza, A.; Aleman, J.; Mas-Balleste, R. Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts 2020, 10, 720. [Google Scholar] [CrossRef]
- Hou, C.; Chen, W.; Fu, L.; Zhang, S.; Liang, C.; Wang, Y. Efficient Degradation of Perfluorooctanoic Acid by Electrospun Lignin-Based Bimetallic MOFs Nanofibers Composite Membranes with Peroxymonosulfate under Solar Light Irradiation. Int. J. Biol. Macromol. 2021, 174, 319–329. [Google Scholar] [CrossRef]
- Son, B.T.; Long, N.V.; Hang, N.T.N. The Development of Biomass-Derived Carbon-Based Photocatalysts for the Visible-Light-Driven Photodegradation of Pollutants: A Comprehensive Review. RSC Adv. 2021, 11, 30574–30596. [Google Scholar] [CrossRef]
- Pervez, M.N.; Jiang, T.; Mahato, J.K.; Ilango, A.K.; Kumaran, Y.; Zuo, Y.; Zhang, W.; Efstathiadis, H.; Feldblyum, J.I.; Yigit, M.V.; et al. Surface Modification of Graphene Oxide for Fast Removal of Per-and Polyfluoroalkyl Substances (PFAS) Mixtures from River Water. ACS EST Water 2024, 4, 2968–2980. [Google Scholar] [CrossRef]
- Zahid, M.; Khan, Z.U.H.; Sun, J.; Muhammad, N.; Sabahat, S.; Shah, N.S.; Iqbal, J. Biochar-Derived Photocatalysts for Pharmaceutical Waste Removal, a Sustainable Approach to Water Purification. Appl. Surf. Sci. Adv. 2025, 26, 100721. [Google Scholar] [CrossRef]
- Chavan, D.; Mayilswamy, N.; Chame, S.; Kandasubramanian, B. Biochar Adsorption: A Green Approach to PFAS Contaminant Removal. CleanMat 2024, 1, 52–77. [Google Scholar] [CrossRef]
- Ma, B.; Zhu, J.; Xu, Y.; Zhang, L.; Liu, D.; Chen, C.; Sun, B. Photocatalytic Degradation of Methylene Blue Using ZnO Modified with Nano-Biochar Derived from Bacterial Cellulose. Ceram. Int. 2025, 51, 14948–14956. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.; Xuan, Y.; Gan, L.; Pan, M. Enhanced Photocatalytic Performance for Phenol Degradation Using ZnO Modified with Nano-Biochar Derived from Cellulose Nanocrystals. Cellulose 2021, 28, 991–1009. [Google Scholar] [CrossRef]
- Qiu, M.; Hu, B.; Chen, Z.; Yang, H.; Zhuang, L.; Wang, X. Challenges of Organic Pollutant Photocatalysis by Biochar-Based Catalysts. Biochar 2021, 3, 117–123. [Google Scholar] [CrossRef]
- Birch, Q.T.; Birch, M.E.; Nadagouda, M.N.; Dionysiou, D.D. Nano-Enhanced Treatment of per-Fluorinated and Poly-Fluorinated Alkyl Substances (PFAS). Curr. Opin. Chem. Eng. 2022, 35, 100779. [Google Scholar] [CrossRef]
- Saroha, J.; Rani, E.; Devi, M.; Pathi, P.; Kumar, M.; Sharma, S.N. Plasmon-Assisted Photocatalysis of Organic Pollutants by Au/Ag–TiO2 Nanocomposites: A Comparative Study. Mater. Today Sustain. 2023, 23, 100466. [Google Scholar] [CrossRef]
- Jiang, T.; Pervez, M.N.; Ilango, A.K.; Liang, Y. Enhanced Removal and Destruction of Per-and Polyfluoroalkyl Substances (PFAS) Mixtures by Coupling Magnetic Modified Clay and Photoreductive Degradation. J. Water Process Eng. 2025, 69, 106733. [Google Scholar] [CrossRef]
- Zhang, J.; Pang, H.; Gray, S.; Ma, S.; Xie, Z.; Gao, L. PFAS Removal from Wastewater by In-Situ Formed Ferric Nanoparticles: Solid Phase Loading and Removal Efficiency. J. Environ. Chem. Eng. 2021, 9, 105452. [Google Scholar] [CrossRef]
- Li, F.; Wei, Z.; He, K.; Blaney, L.; Cheng, X.; Xu, T.; Liu, W.; Zhao, D. A Concentrate-and-Destroy Technique for Degradation of Perfluorooctanoic Acid in Water Using a New Adsorptive Photocatalyst. Water Res. 2020, 185, 116219. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, T.; Zhao, D.; Li, F.; Liu, W.; Wang, B.; An, B. Adsorption and Solid-Phase Photocatalytic Degradation of Perfluorooctane Sulfonate in Water Using Gallium-Doped Carbon-Modified Titanate Nanotubes. Chem. Eng. J. 2021, 421, 129676. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Yin, M.; Zhang, Z.; Chen, Y.; Deng, Q.; Wang, S. Surfactant-Sensitized Covalent Organic Frameworks-Functionalized Lanthanide-Doped Nanocrystals: An Ultrasensitive Sensing Platform for Perfluorooctane Sulfonate. ACS Omega 2019, 4, 15947–15955. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; de Vera, G.A.; Chu, C.; Zhu, Q.; Stavitski, E.; Mao, J.; Xin, H.; Spies, J.A.; Schmuttenmaer, C.A.; Niu, J. Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. ACS Catal. 2018, 8, 9353–9358. [Google Scholar] [CrossRef]
- Weon, S.; Suh, M.-J.; Chu, C.; Huang, D.; Stavitski, E.; Kim, J.-H. Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS EST Eng. 2021, 1, 512–522. [Google Scholar] [CrossRef]
- Huang, D.; Wang, K.; Niu, J.; Chu, C.; Weon, S.; Zhu, Q.; Lu, J.; Stavitski, E.; Kim, J.-H. Amorphous Pd-Loaded Ti4O7 Electrode for Direct Anodic Destruction of Perfluorooctanoic Acid. Environ. Sci. Technol. 2020, 54, 10954–10963. [Google Scholar] [CrossRef]
- Lopes da Silva, F.; Laitinen, T.; Pirilä, M.; Keiski, R.L.; Ojala, S. Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA) from Wastewaters by TiO2, In2O3 and Ga2O3 Catalysts. Top. Catal. 2017, 60, 1345–1358. [Google Scholar] [CrossRef]
- Xu, B.; Ahmed, M.B.; Zhou, J.L.; Altaee, A. Visible and UV Photocatalysis of Aqueous Perfluorooctanoic Acid by TiO2 and Peroxymonosulfate: Process Kinetics and Mechanistic Insights. Chemosphere 2020, 243, 125366. [Google Scholar] [CrossRef] [PubMed]
PFAS Compound | Chemical Formula | Chemical Structure | Chain Length | Functional Group |
---|---|---|---|---|
PFOA | C7F15COOH | C8 | Carboxyl | |
PFOS | C8F17SO3H | C8 | Sulfonic acid | |
PFHxA | C6F13COOH | C6 | Carboxyl | |
PFBA | C4F9COOH | C4 | Carboxyl | |
PFBS | C4F9SO3H | C4 | Sulfonic acid | |
PFHxS | C6F13SO3H | C6 | Sulfonic acid | |
GenX | C6HF11O2C2HF4 | C6 | Carboxyl | |
PFOSA | C8F17SO2NH2 | C8 | Amide | |
PFDA | C10F21COOH | C10 | Carboxyl |
Project/Study | Scale/Field Type | Key Findings | Limitation Noted/ Relevance to Scale-Up |
---|---|---|---|
Field demonstration: hybrid NF + UV-sulfite for PFAS-impacted groundwater (U.S. DoD) [9] | Pilot-scale, treating NF reject + UV-sulfite in the field | NF achieved ≥95% rejection of many PFAS; UV-sulfite destroyed >75% of PFAS mass in NF reject after 4 h, >90% after 8 h. | Energy costs high for short-chain PFAS; long residence times required; scalability of UV-sulfite under varying water chemistries to be further validated. |
Pilot-scale application of novel BiPO4 photocatalyst (BOHP/UV) (Strategic Environmental Research and Development Program (SERDP); Environmental Security Technology Certification Program (ESTCP). Pilot Scale Assessment of a Deployable Photocatalytic Treatment System Modified with BiPO4 Catalyst Particles for PFAS Destruction in Investigation-Derived Wastewaters. SERDP-ESTCP. https://serdp-estcp.mil/projects/details/ca952465-ff77-48a7-8038-6274812e38ff. Accessed on 17 September 2025) | Deployment to treat investigation-derived wastewater (IDW); continuous operation, batch & pilot systems | >95% reduction in GenX and perfluorocarboxylic acids under certain conditions; good photocatalyst robustness over use; evidence of catalyst stability over ~191 h usage. | Reactor design still relies significantly on photolysis/VUV; optimizing the photocatalytic contribution needed; full energy and cost-viability at large scale yet to be demonstrated. |
Pilot plant adsorption of PFAS in RO concentrate/potable reuse systems (The Water Research Foundation. Pilot-Scale Adsorption of PFAS in RO Concentrate from Potable Reuse Systems. Project 5323. https://www.waterrf.org/research/projects/pilot-scale-adsorption-pfas-ro-concentrate-potable-reuse-systems. Accessed on 17 September 2025) | Adsorption (GAC, ion-exchange, etc.) pilot scale in water-reuse context | Evaluating multiple adsorbent media; useful data on removal efficiencies, media life, cost trajectories. | Adsorption removes PFAS but does not degrade; requires handling of PFAS waste adsorbents; cost of regeneration/disposal. |
Photon Water/Jihostroj in situ containerised system (Photon Water. Photon Water and Jihostroj Jointly Fight PFAS with 99.5% Effectiveness. Photon Water. https://www.photonwater.com/article/photon-water-and-jihostroj-jointly-fight-pfas-with-99-5-effectiveness. Accessed on 17 September 2025) | Industrial pilot/commercial deployment for electroplating and rainwater wastewater | Over 99.5% PFAS removal; ~70% water recycling; system modular (containerised) and in situ operation. | Details on long-term performance, maintenance, energy consumption not yet fully published; how homogeneous the PFAS mix in the influent, or how short-chain PFAS perform, is less clear. |
Commercial process “PerfluorAd®” by Fraunhofer UMSICHT & Cornelsen Umwelttechnologie (Fraunhofer UMSICHT. PerfluorAd®-Process: Energy and Resource Efficient Method for the Removal of Per- and Polyfluorinated Chemicals (PFAS) from Extinguishing Waters. Fraunhofer UMSICHT. https://www.umsicht.fraunhofer.de/en/projects/pfas-perfluorad.html. Accessed on 17 September 2025) | Mobile pilot plant/mobile removal process for firefighting water & groundwater | Process uses an additive to precipitate PFAS (“microflakes”) followed by filtration; demonstrated in pilot scale; process claimed economic and practical for some contaminated waters. | Does not directly degrade PFAS; requires handling of precipitated material; performance under high load, continuous operation, and varied PFAS profiles needs further validation. |
AOP/Variant | Mechanism/Reactive Species | Typical Conditions | Advantages | Limitations | Reported Removal/Defluorination | Energy/Cost | Scale |
---|---|---|---|---|---|---|---|
Direct photolysis (UV254/VUV) | Direct photolysis of functional groups; VUV generates e−aq and high-energy photons | UV254 LP/MP lamps; VUV 185 nm; variable pH | Simple setup; no additives required | UV254: poor mineralization of C–F; VUV: high energy demand; by-product formation | UV254: functional group degradation but negligible defluorination; VUV: up to 50–90% defluorination in lab tests | VUV is very energy-intensive (high EE/O); UV254 lower energy but less effective | Lab/pilot scale; VUV applied in some pilot demonstrations |
UV + Sulfite (e−aq generation) | Generation of hydrated electrons (e−aq) reductively attacking C–F bonds | UV254–VUV + sulfite (mM); alkaline pH | Highly effective for C–F cleavage; works on long- and short-chain PFAS | Requires chemical dosing; scavenger sensitivity | High degradation and defluorination (>70–95% under optimal conditions) | Moderate–high energy demand; additional cost for sulfite | Lab/pilot studies; promising for RO/NF concentrates |
Photocatalysis (TiO2, BiOCl, BiPO4, doped) | ROS generation (•OH, h+) on catalyst surface | TiO2 UV-activated (<385 nm); immobilized/suspension | Abundant materials; potential solar use; immobilization feasible | Mainly attacks polar groups; limited direct C–F cleavage; catalyst fouling | Functional group degradation; partial defluorination, variable results | Energy depends on UV source; catalyst stability issues | Lab/pilot scale; better in hybrid systems |
Photo-Fenton/Fenton-like | H2O2 + Fe2+ (UV-assisted) → •OH | Acidic pH (~3); H2O2/Fe dosing | High •OH production; effective for co-contaminants | Acidic conditions; sludge generation; limited C–F attack | Good removal of head groups; limited PFAS mineralization | Moderate cost (chemicals + pH adjustment) | Lab/pilot; often combined with other AOPs |
Persulfate activation (UV, heat, Fe, photocatalysis) | SO4•− radicals generated from persulfate | Persulfate (mM); activation by UV/heat/Fe | Strong oxidant; more selective than •OH in complex waters | Requires activation; variable PFAS effectiveness; by-products possible | Functional group degradation; partial defluorination reported | Chemical cost + activation energy | Lab/pilot; often used as pretreatment |
Electrooxidation (BDD, PbO2 anodes) | Direct anodic oxidation; adsorbed •OH; high mineralization potential | BDD anodes, high conductivity electrolyte | High mineralization; fluoride release possible | High energy demand; electrode cost; by-products | High defluorination/mineralization in lab and some pilots | Significant electricity demand; electrode replacement costly | Pilot/commercial in specific cases; strong candidate for complete destruction |
Plasma (DBD, gliding arc, corona) | Plasma discharge generates UV, radicals, electrons | Non-thermal plasma reactors; direct contact with water/air | Fast PFAS degradation; C–F cleavage possible | Extremely energy-intensive; scalability issues | High degradation and defluorination in lab tests | Very high EE/O; engineering complexity | Lab/pilot only; scale-up limited |
Sonolysis (ultrasound) | Cavitation → localized heat, radicals, pressure | High-frequency ultrasound; kHz–MHz range | Cavitation effects may attack PFAS at interfaces | Low volumetric rates; high energy; matrix effects | Partial PFAS degradation in some studies | High energy per volume treated | Lab scale; often combined with other AOPs |
Hybrid systems (UV + plasma, UV + electro, etc.) | Synergistic ROS + reductive species | Integrated setups | Synergies improve degradation and defluorination | Complex operation; high cost | Higher performance than individual processes | High energy demand; complexity | Lab/pilot; emerging |
Adsorption (GAC, ion-exchange resins) | Capture, not destruction | GAC, IEX resins; modular units | Effective PFAS removal from effluents; widely applied | Does not degrade PFAS; waste management required | >90% removal from effluents, depending on PFAS type | Cost of media and regeneration/disposal | Full-scale widely used; often combined with destructive AOPs |
Membrane + AOP trains (RO/NF + destruction of concentrate) | Separation + destruction of retentate | NF/RO concentration + AOP treatment | Reduces treated volume; practical strategy | Concentrate management challenging | High removal in permeate; variable AOP performance on concentrate | Combined costs (membranes + AOP) | Pilot/full-scale; increasingly practical strategy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Fernández, L.A.; Medellín Castillo, N.A.; Sánchez Polo, M.; Vilasó-Cadre, J.E.; Reyes-Domínguez, I.A.; de León-Martínez, L.D. Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications. Catalysts 2025, 15, 946. https://doi.org/10.3390/catal15100946
González Fernández LA, Medellín Castillo NA, Sánchez Polo M, Vilasó-Cadre JE, Reyes-Domínguez IA, de León-Martínez LD. Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications. Catalysts. 2025; 15(10):946. https://doi.org/10.3390/catal15100946
Chicago/Turabian StyleGonzález Fernández, Lázaro Adrián, Nahum Andrés Medellín Castillo, Manuel Sánchez Polo, Javier E. Vilasó-Cadre, Iván A. Reyes-Domínguez, and Lorena Díaz de León-Martínez. 2025. "Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications" Catalysts 15, no. 10: 946. https://doi.org/10.3390/catal15100946
APA StyleGonzález Fernández, L. A., Medellín Castillo, N. A., Sánchez Polo, M., Vilasó-Cadre, J. E., Reyes-Domínguez, I. A., & de León-Martínez, L. D. (2025). Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications. Catalysts, 15(10), 946. https://doi.org/10.3390/catal15100946