Enhancing Electron Transfer in Cytochrome P450 Systems: Insights from CYP119–Putidaredoxin Interface Engineering
Abstract
1. Introduction
2. Results
2.1. Design of CYP119 Mutant Enzymes and Protein–Protein Docking
2.2. Cloning, Expression, and Purification of WT and Mutant CYP119s
2.3. UV–Visible Spectral Analysis of WT and Mutant CYP119s
2.4. Lauric Acid Binding to WT and Mutant CYP119s
2.5. Putidaredoxin Binding to WT and Mutant CYP119s
2.6. Assessment of Electron Transfer from Putidaredoxin to WT and Mutant CYP119s
2.7. Fatty Acid Hydroxylation of WT and N34E/D77R CYP119
2.8. Investigation of Uncoupling and Electron Transfer of WT and Mutant CYP119s
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Design of CYP119 Mutant Enzymes and Protein–Protein Docking
4.3. Cloning, Expression, and Purification of WT and Mutant CYP119s
4.4. Expression and Purification of Redox Partners Putidaredoxin and Putidaredoxin Reductase
4.5. UV–Visible Spectral Analysis of WT and Mutant CYP119s
4.6. UV–Visible Spectral Analysis of Putidaredoxin and Putidaredoxin Reductase
4.7. Lauric Acid Binding to WT and Mutant CYP119s
4.8. Putidaredoxin Binding to WT and Mutant CYP119s
4.9. Assessment of Electron Transfer from Putidaredoxin to WT and Mutant CYP119s
4.10. Fatty Acid Hydroxylation of WT and N34E/D77R CYP119
4.11. Investigation of Uncoupling and Electron Transfer of WT and Mutant CYP119s
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WT | Wild-Type |
SDM | Site-Directed Mutagenesis |
IPTG | Isopropyl β-D-1-thiogalactopyranoside |
ALA | 5-Aminolevulinic acid hydrochloride |
Pdx | Putidaredoxin |
PdR | Putidaredoxin reductase |
CYP | Cytochrome P450 |
NADH | Nicotinamide adenine dinucleotide hydrogen |
FAD | Flavin adenine dinucleotide |
HRP | Horseradish peroxidase |
SOD | Superoxide Dismutase |
References
- Di Nardo, G.; Gilardi, G. Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends Biochem. Sci. 2020, 45, 511–525. [Google Scholar] [CrossRef]
- Urlacher, V.B.; Girhard, M. Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol. 2019, 37, 882–897. [Google Scholar] [CrossRef]
- Bernhardt, R.; Urlacher, V.B. Cytochromes P450 as promising catalysts for biotechnological application: Chances and limitations. Appl. Microbiol. Biotechnol. 2014, 98, 6185–6203. [Google Scholar] [CrossRef] [PubMed]
- McLean. Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. In Advances in Experimental Medicine and Biology; Hrycay, E., Bandiera, S., Eds.; Springer: Cham, Switzerland, 2015; Volume 851, Available online: http://www.springer.com/series/5584 (accessed on 1 June 2024).
- Wei, X.; Zhang, C.; Gao, X.; Gao, Y.; Yang, Y.; Guo, K.; Du, X.; Pu, L.; Wang, Q. Enhanced Activity and Substrate Specificity by Site-Directed Mutagenesis for the P450 119 Peroxygenase Catalyzed Sulfoxidation of Thioanisole. Chem. Open 2019, 8, 1076–1083. [Google Scholar] [CrossRef]
- Denisov, I.G.; Makris, T.M.; Sligar, S.G.; Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev. 2005, 105, 2253–2278. [Google Scholar] [CrossRef]
- He, J.; Liu, X.; Li, C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024, 29, 2480. [Google Scholar] [CrossRef]
- Guengerich, F.P. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catal. 2018, 8, 10964–10976. [Google Scholar] [CrossRef]
- Suzuki, R.; Hirakawa, H.; Nagamune, T. Electron donation to an archaeal cytochrome P450 is enhanced by PCNA-mediated selective complex formation with foreign redox proteins. Biotechnol. J. 2014, 9, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Du, L.; Bernhardt, R. Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol. 2020, 28, 445–454. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Garcia, C.; Li, H.; Bhaskar, B.; Poulos, T.L. Crystal structure of putidaredoxin, the 2Fe-2S component of the P450cam monooxygenase system from Pseudomonas putida. J. Mol. Biol. 2003, 333, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Min, J.; Zhang, L.; Yang, Y.; Yu, X.; Guo, R. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. ChemBioChem 2021, 22, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Iyanagi, T. Roles of Ferredoxin-NADP+ Oxidoreductase and Flavodoxin in NAD(P)H-Dependent Electron Transfer Systems. Antioxidants 2022, 11, 2143. [Google Scholar] [CrossRef]
- Koo, L.S.; Immoos, C.E.; Cohen, M.S.; Farmer, P.J.; de Montellano, P.R.O. Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J. Am. Chem. Soc. 2002, 124, 5684–5691. [Google Scholar] [CrossRef]
- Morlock, L.K.; Böttcher, D.; Bornscheuer, U.T. Simultaneous detection of NADPH consumption and H2O2 production using the Ampliflu™ Red assay for screening of P450 activities and uncoupling. Appl. Microbiol. Biotechnol. 2017, 102, 985–994. [Google Scholar] [CrossRef]
- Koo, L.S.; Tschirret-Guth, R.A.; Straub, W.E.; Moënne-Loccoz, P.; Loehr, T.M.; de Montellano, P.R.O. The active site of the thermophilic CYP119 from Sulfolobus solfataricus. J. Biol. Chem. 2000, 275, 14112–14123. [Google Scholar] [CrossRef]
- Aoki, M.; Ishimori, K.; Morishima, I.; Wada, Y. Roles of valine-98 and glutamic acid-72 of putidaredoxin in the electron-transfer complexes with NADH-putidaredoxin reductase and P450cam. Inorganica Chim. Acta 1998, 272, 80–88. [Google Scholar] [CrossRef]
- Tripathi, S.; Li, H.; Poulos, T.L. Structural basis for effector control and redox partner recognition in cytochrome P450. Science 2013, 340, 1227–1230. [Google Scholar] [CrossRef]
- Chiliza, Z.E.; Martínez-Oyanedel, J.; Syed, K. An overview of the factors playing a role in cytochrome P450 monooxygenase and ferredoxin interactions. Biophys. Rev. 2020, 12, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Batabyal, D.; Richards, L.S.; Poulos, T.L. Effect of Redox Partner Binding on Cytochrome P450 Conformational Dynamics. J. Am. Chem. Soc. 2017, 139, 13193–13199. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, X. Recent Advances in the Engineering of Cytochrome P450 Enzymes. Catalysts 2025, 15, 374. [Google Scholar] [CrossRef]
- Stresser, D. Cytochrome P450 In Vitro Methods and Protocols. In Methods in Pharmacology and Toxicology; Yan, Z., Caldwell, G., Eds.; Humana: New York, NY, USA, 2021. [Google Scholar]
- Shimada, H.; Nagano, S.; Hori, H.; Ishimura, Y. Putidaredoxin–cytochrome P450cam interaction. J. Inorg. Biochem. 2001, 83, 255–260. [Google Scholar] [CrossRef]
- de Montellano, O. Cytochrome P450 Structure, Mechanism, and Biochemistry, 3rd ed; Springer: New York, NY, USA, 2005. [Google Scholar]
- Başlar, M.S.; Sakallı, T.; Güralp, G.; Doğru, E.K.; Haklı, E.; Surmeli, N.B. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. JBIC J. Biol. Inorg. Chem. 2020, 25, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.Y.; Poulos, T.L.; Sevrioukova, I.F. Putidaredoxin-to-cytochrome P450cam electron transfer: Differences between the two reductive steps required for catalysis. Biochemistry 2006, 45, 11934–11944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, Z.; Liu, Z.; Zhou, S.; Ma, L.; Liu, W.; Huang, J.-W.; Ko, T.-P.; Li, X.; Hu, Y.; et al. Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nat. Commun. 2020, 11, 2676. [Google Scholar] [CrossRef] [PubMed]
- Uhlmann, H.; Kraft, R.; Bernhardt, R. C-terminal region of adrenodoxin affects its structural integrity and determines differences in its electron transfer function to cytochrome P-450. J. Biol. Chem. 1994, 269, 22557–22564. [Google Scholar] [CrossRef]
- Faro, M.; Schiffler, B.; Heinz, A.; Nogués, I.; Medina, M.; Bernhardt, R.; Gómez-Moreno, C. Insights into the design of a hybrid system between anabaena ferredoxin-NADP+ reductase and bovine adrenodoxin. Eur. J. Biochem. 2003, 270, 726–735. [Google Scholar] [CrossRef]
- Koga, H.; Sagara, Y.; Yaoi, T.; Tsujimura, M.; Nakamura, K.; Sekimizu, K.; Makino, R.; Shimada, H.; Ishimura, Y.; Yura, K.; et al. Essential role of the Arg112 residue of cytochrome P450cam for electron transfer from reduced putidaredoxin. FEBS Lett. 1993, 331, 109–113. [Google Scholar] [CrossRef]
- Meng, S.; Li, Z.; Ji, Y.; Ruff, A.J.; Liu, L.; Davari, M.D.; Schwaneberg, U. Introduction of aromatic amino acids in electron transfer pathways yielded improved catalytic performance of cytochrome P450s. Chin. J. Catal. 2023, 49, 81–90. [Google Scholar] [CrossRef]
- Lyskov, S.; Chou, F.-C.; Conchúir, S.Ó.; Der, B.S.; Drew, K.; Kuroda, D.; Xu, J.; Weitzner, B.D.; Renfrew, P.D.; Sripakdeevong, P.; et al. Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS ONE 2013, 8, e63906. [Google Scholar] [CrossRef]
- Chaudhury, S.; Lyskov, S.; Gray, J.J. PyRosetta: A script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 2010, 26, 689–691. [Google Scholar] [CrossRef]
- Lyskov, S.; Gray, J.J. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 2008, 36, W233–W238. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Follmer, A.H.; Tripathi, S.; Poulos, T.L. Ligand and Redox Partner Binding Generates a New Conformational State in Cytochrome P450cam (CYP101A1). J. Am. Chem. Soc. 2019, 141, 2678–2683. [Google Scholar] [CrossRef]
- Poulos, T.L.; Follmer, A.H. Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450. Accounts Chem. Res. 2022, 55, 373–380. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Batabyal, D.; Nguyen, B.D.; Poulos, T.L. Conformational selectivity in cytochrome P450 redox partner interactions. Proc. Natl. Acad. Sci. USA 2016, 113, 8723–8728. [Google Scholar] [CrossRef] [PubMed]
- Pylypenko, O.; Schlichting, I. Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s. Annu. Rev. Biochem. 2004, 73, 991–1018. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Lamb, D.C.; Smith, J.A.; Wawrzak, Z.; Kelly, S.L.; Lepesheva, G.I. Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Tan, C.Y.; Hirakawa, H.; Suzuki, R.; Haga, T.; Iwata, F.; Nagamune, T. Immobilization of a Bacterial Cytochrome P450 Monooxygenase System on a Solid Support. Angew. Chem. 2016, 128, 15226–15230. [Google Scholar] [CrossRef]
- Doğru, E.K.; Güralp, G.; Uyar, A.; Surmeli, N.B. Rational design of thermophilic CYP119 for progesterone hydroxylation by in silico mutagenesis and docking screening. J. Mol. Graph. Model. 2023, 118, 108323. [Google Scholar] [CrossRef] [PubMed]
- Sakalli, T.; Surmeli, N.B. Functional characterization of a novel CYP119 variant to explore its biocatalytic potential. Biotechnol. Appl. Biochem. 2022, 69, 1741–1756. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Poulos, T.L.; Churbanova, I.Y. Crystal structure of the Putidaredoxin Reductase·Putidaredoxin electron transfer complex. J. Biol. Chem. 2010, 285, 13616–13620. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Nguyen, N.; Milhim, M.; Nguyen, V.; Lai, T.; Nguyen, H.; Le, T.; Phan, T.; Bernhardt, R. Characterization of a thermophilic cytochrome P450 of the CYP203A subfamily from Binh Chau hot spring in Vietnam. FEBS Open Bio 2021, 11, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pochapsky, S.S.; Pochapsky, T.C.; Jain, N.U. Solution NMR Structure of Putidaredoxin–Cytochrome P450cam Complex via a Combined Residual Dipolar Coupling–Spin Labeling Approach Suggests a Role for Trp106 of Putidaredoxin in Complex Formation. J. Mol. Biol. 2008, 384, 349–363. [Google Scholar] [CrossRef] [PubMed]
Mutant Name | Total Score (REU) | Interface Score (REU) | RMSD (Å) |
---|---|---|---|
WT CYP119 | −502.7 | −3.5 | 1.5 |
N34E | −502.6 | −3.0 | 1.1 |
N34E/D77R | −501.1 | −3.2 | 1.6 |
Enzyme | Lauric Acid Binding Kd (µM) | Pdx Binding Kd (µM) |
---|---|---|
WT CYP119 | 19 ± 6 | 2390 ± 224 |
N34E | 35 ± 19 | 112 ± 48 |
D77R | 87 ± 53 | 797 ± 184 |
N34E/D77R | 23 ± 11 | 200 ± 31 |
Enzyme | Concentration (µM) | Reduced (%) |
---|---|---|
WT CYP119 | 0.09 ± 0.007 | 6.2 |
N34E | 0.22 | 11.4 |
D77R | 0.31 ± 0.08 | 20.4 |
N34E/D77R | 0.63 ± 0.1 | 45.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakimova, A.; Surmeli, N.B. Enhancing Electron Transfer in Cytochrome P450 Systems: Insights from CYP119–Putidaredoxin Interface Engineering. Catalysts 2025, 15, 1000. https://doi.org/10.3390/catal15101000
Kakimova A, Surmeli NB. Enhancing Electron Transfer in Cytochrome P450 Systems: Insights from CYP119–Putidaredoxin Interface Engineering. Catalysts. 2025; 15(10):1000. https://doi.org/10.3390/catal15101000
Chicago/Turabian StyleKakimova, Akbota, and Nur Basak Surmeli. 2025. "Enhancing Electron Transfer in Cytochrome P450 Systems: Insights from CYP119–Putidaredoxin Interface Engineering" Catalysts 15, no. 10: 1000. https://doi.org/10.3390/catal15101000
APA StyleKakimova, A., & Surmeli, N. B. (2025). Enhancing Electron Transfer in Cytochrome P450 Systems: Insights from CYP119–Putidaredoxin Interface Engineering. Catalysts, 15(10), 1000. https://doi.org/10.3390/catal15101000