Ag Nanoparticle-Modified Metal Azole Framework for Enhancing the Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterization of the Catalysts
2.2. Electrochemical Performances
3. Experimental Section
3.1. Synthesis of Metal Azole Framework Material with 5-Mercapto-1-Methyltet-Razole Ligand (MAF-MMT)
3.2. Synthesis of Ag NPs@MAF-MMT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, J.; Bai, X.; Xu, X.; Bai, X.; Husile, A.; Zhang, S.; Qi, L.; Guan, J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem. Sci. 2024, 15, 7870–7907. [Google Scholar] [CrossRef]
- Li, C.; Ji, Y.; Wang, Y.; Liu, C.; Chen, Z.; Tang, J.; Hong, Y.; Li, X.; Zheng, T.; Jiang, Q.; et al. Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 2023, 15, 113–157. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Wang, W.; Han, X.; Wang, H.; Wang, G.; Wang, X.; Xie, J.; Rao, D.; Wu, C.; Liu, J.; et al. Cathode gas electrode modified with heterogeneous polymeric metal phthalocyanine for achieving high current density for CO2 electroreduction. Chem. Catal. 2024, 4, 100848–100912. [Google Scholar] [CrossRef]
- Wang, W.; Gong, S.; Wang, H.; Tan, Y.; Zhu, X.; Wang, X.; Liu, J.; Yu, W.; Zhu, G.; Lü, X. Surface-modified silver aerogels combining interfacial regulation for electrocatalytic CO2 reduction under large current density. Chem. Eng. J. 2024, 490, 151849–151858. [Google Scholar] [CrossRef]
- Xing, W.; Yan, Y.; Wang, C.; Gao, J.; Yu, C.; Yan, Y.; Li, C.; Ma, Z.; Wu, Y. MOFs self-assembled molecularly imprinted membranes with photoinduced regeneration ability for long-lasting selective separation. Chem. Eng. J. 2022, 437, 135128–135145. [Google Scholar] [CrossRef]
- Yu, L.; Fan, W.; He, N.; Liu, Y.; Han, X.; Qin, F.; Ding, J.; Zhu, G.; Bai, H.; Shi, W. Effect of unsaturated coordination on photoelectrochemical properties of Ni-MOF/TiO2 photoanode for water splitting. Int. J. Hydrogen Energy 2021, 46, 17741–17750. [Google Scholar] [CrossRef]
- Wang, C.; Ye, X.; Liu, Y.; Jia, Z.; Cao, C.; Xiao, Q.; Du, J.; Kong, X.; Wu, X.; Chen, Z.; et al. Enhanced anaerobic digestion for degradation of swine wastewater through a Fe/Ni-MOF modified microbial electrolysis cell. J. Clean. Prod. 2022, 380, 134773–134784. [Google Scholar] [CrossRef]
- Zhang, H.; Nai, J.; Yu, L.; Lou, X.W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, J.; Huang, H.; Du, X.; Chen, H.; He, X.; Li, W.; Fang, W.; Wang, D.; Zeng, X.; et al. Regulating electronic structure of bimetallic NiFe-THQ conductive metal–organic frameworks to boost catalytic activity for oxygen evolution reaction. Adv. Funct. Mater. 2023, 34, 2310292–2310301. [Google Scholar] [CrossRef]
- Wang, X.; Borse, R.A.; Wang, G.; Xiao, Z.; Zhu, H.; Sun, Y.; Qian, Z.; Zhong, S.; Wang, R. Two-dimensional conductive metal-organic frameworks electrocatalyst: Design principle and energy conversion applications. Mater. Today Energy 2024, 44, 101652–101670. [Google Scholar] [CrossRef]
- Yin, J.C.; Lian, X.; Li, Z.G.; Cheng, M.; Liu, M.; Xu, J.; Li, W.; Xu, Y.; Li, N.; Bu, X.H. Triazacoronene-based 2d conductive metal–organic framework for high-capacity lithium storage. Adv. Funct. Mater. 2024, 34, 2403656–2403662. [Google Scholar] [CrossRef]
- Yang, J.; Shen, Y.; Sun, Y.; Xian, J.; Long, Y.; Li, G. Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew. Chem. Int. Ed. 2023, 62, 135–145. [Google Scholar] [CrossRef]
- Kung, C.-W.; Platero-Prats, A.E.; Drout, R.J.; Kang, J.; Wang, T.C.; Audu, C.O.; Hersam, M.C.; Chapman, K.W.; Farha, O.K.; Hupp, J.T. Inorganic “conductive glass” approach to rendering mesoporous metal–organic frameworks electronically conductive and chemically responsive. ACS Appl. Mater. Interfaces 2018, 10, 30532–30540. [Google Scholar] [CrossRef]
- Li, G.P.; Zhang, K.; Zhao, H.Y.; Hou, L.; Wang, Y.Y. Increased electric conductivity upon i2 uptake and gas sorption in a pillar-layered metal–organic framework. ChemPlusChem 2017, 82, 716–720. [Google Scholar] [CrossRef]
- Pathak, A.; Shen, J.-W.; Usman, M.; Wei, L.-F.; Mendiratta, S.; Chang, Y.-S.; Sainbileg, B.; Ngue, C.-M.; Chen, R.-S.; Hayashi, M.; et al. Integration of a (–Cu–S–) n plane in a metal–organic framework affords high electrical conductivity. Nat. Commun. 2019, 10, 1721–1728. [Google Scholar] [CrossRef]
- Wang, H.; Gong, S.; Wang, W.; Ge, D.; Lü, X. Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites. Chin. J. Inorg. Chem. 2023, 39, 2151–2159. [Google Scholar] [CrossRef]
- Yang, G.; Wang, D.; Wang, Y.; Hu, W.; Hu, S.; Jiang, J.; Huang, J.; Jiang, H.-L. Modulating the primary and secondary coordination spheres of single ni(II) sites in metal–organic frameworks for boosting photocatalysis. J. Am. Chem. Soc. 2024, 146, 10798–10805. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, Y.; Sun, Z.; Lin, Y.; Yao, T.; Jiang, H.-L. Regulating interaction with surface ligands on Au25 nanoclusters by multivariate metal–organic framework hosts for boosting catalysis. Natl. Sci. Rev. 2024, 11, 252–261. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Q.; Yu, S.H.; Jiang, H.L. Pd Nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal–organic framework for efficient and selective catalysis. Angew. Chem. Int. Ed. 2016, 55, 3685–3689. [Google Scholar] [CrossRef]
- Aparna, R.K.; Surendran, V.; Roy, D.; Pathak, B.; Shaijumon, M.M.; Mandal, S. Silver nanoparticle-decorated defective zr-based metal–organic frameworks for efficient electrocatalytic carbon dioxide reduction with ultrahigh mass activity. ACS Appl. Energy Mater. 2023, 6, 4072–4078. [Google Scholar] [CrossRef]
- Chen, Y.-Z.; Gu, B.; Uchida, T.; Liu, J.; Liu, X.; Ye, B.-J.; Xu, Q.; Jiang, H.-L. Location determination of metal nanoparticles relative to a metal-organic framework. Nat. Commun. 2019, 10, 3462–3472. [Google Scholar] [CrossRef]
- Wang, W.; Gong, S.; Lu, R.; Wang, H.; Liu, J.; Zhu, X.; Liu, B.; Lü, X. In situ growth of Ag aerogels mediating effective electrocatalytic CO2 reduction and Zn-CO2 batteries. Chem. Eng. Sci. 2023, 280, 119042. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Xi, S.; Zhang, T.; Liu, Z.; Chen, J.; Shen, L.; Kawi, S.; Wang, L. Functionalized Ag with thiol ligand to promote effective CO2 electroreduction. ACS Nano 2022, 16, 13982–13991. [Google Scholar] [CrossRef]
- Chen, X.; Qin, L.; Kang, S.-Z.; Li, X. A special zinc metal-organic frameworks-controlled composite nanosensor for highly sensitive and stable SERS detection. Appl. Surf. Sci. 2021, 550, 149302–149312. [Google Scholar] [CrossRef]
- Seney, C.S.; Gutzman, B.M.; Goddard, R.H. Correlation of size and surface-enhanced Raman scattering activity of optical and spectroscopic properties for silver nanoparticles. J. Phys. Chem. C 2009, 113, 74–80. [Google Scholar] [CrossRef]
- Wang, Y.; Park, B.J.; Paidi, V.K.; Huang, R.; Lee, Y.; Noh, K.-J.; Lee, K.-S.; Han, J.W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649. [Google Scholar] [CrossRef]
- Meng, Z.; Luo, J.; Li, W.; Mirica, K.A. Hierarchical tuning of the performance of electrochemical carbon dioxide reduction using conductive two-dimensional metallophthalocyanine based metal–organic frameworks. J. Am. Chem. Soc. 2020, 142, 21656–21669. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.; Song, J.; Xi, S.; Du, Y.; Wang, J.; Huang, Z.F.; Xu, Z.J.; Wang, X. Boosting Electrochemical CO2 reduction on metal–organic frameworks via ligand doping. Angew. Chem. Int. Ed. 2019, 58, 4041–4045. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, R.; Shi, Z.; Binyamin, S.; Yang, Y.; Liberman, I.; Ifraemov, R.; Mukhopadhyay, S.; Zhang, L.; Hod, I. Electrostatic secondary-sphere interactions that facilitate rapid and selective electrocatalytic CO2 reduction in a Fe-porphyrin-based metal–organic framework. Angew. Chem. Int. Ed. 2022, 61, 6085–6092. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.-H.; Shekhah, O.; Lee, G.; Mallick, A.; Jiang, H.; Li, F.; Chen, B.; Wicks, J.; Eddaoudi, M.; Sargent, E.H. Intermediate binding control using metal–organic frameworks enhances electrochemical CO2 reduction. J. Am. Chem. Soc. 2020, 142, 21513–21521. [Google Scholar] [CrossRef]
- Al-Attas, T.A.; Marei, N.N.; Yong, X.; Yasri, N.G.; Thangadurai, V.; Shimizu, G.; Siahrostami, S.; Kibria, M.G. Ligand-engineered metal–organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide. ACS Catal. 2021, 11, 7350–7357. [Google Scholar] [CrossRef]
- Wen, T.; Liu, M.; Chen, S.; Li, Q.; Du, Y.; Zhou, T.; Ritchie, C.; Zhang, J. 2D boron imidazolate framework nanosheets with electrocatalytic applications for oxygen evolution and carbon dioxide reduction reaction. Small 2020, 16, 1907669–1907677. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Wang, H.; Zhang, Y.; Tan, Y.; Lv, X. Ag Nanoparticle-Modified Metal Azole Framework for Enhancing the Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Catalysts 2025, 15, 32. https://doi.org/10.3390/catal15010032
Han X, Wang H, Zhang Y, Tan Y, Lv X. Ag Nanoparticle-Modified Metal Azole Framework for Enhancing the Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Catalysts. 2025; 15(1):32. https://doi.org/10.3390/catal15010032
Chicago/Turabian StyleHan, Xu, Haotian Wang, Yijie Zhang, Yuting Tan, and Xiaomeng Lv. 2025. "Ag Nanoparticle-Modified Metal Azole Framework for Enhancing the Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide" Catalysts 15, no. 1: 32. https://doi.org/10.3390/catal15010032
APA StyleHan, X., Wang, H., Zhang, Y., Tan, Y., & Lv, X. (2025). Ag Nanoparticle-Modified Metal Azole Framework for Enhancing the Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Catalysts, 15(1), 32. https://doi.org/10.3390/catal15010032