Metronidazole Electro-Oxidation Degradation on a Pilot Scale
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pilot Scale of Degradation Kinetics
3.2. Treatment Quality Analysis
3.3. Metronidazole Degradation Byproducts
3.4. Cost Analysis
Laboratory Scale | Pilot Scale |
---|---|
Low energetic consumption, considering volumes less than 1 L | High energetic consumption, because of the large volumes treated |
Ideal operating conditions are considered for optimization | Optimization depends on the performance at scale and the cost of operation |
Operating costs are low because of the scale | High operating costs for commercial viability |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Li, W.; Désesquelles, P.; Van-Oanh, N.T.; Thomas, S.; Yang, J. A Statistical Model and DFT Study of the Fragmentation Mechanisms of Metronidazole by Advanced Oxidation Processes. J. Phys. Chem. A 2019, 123, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Feier, B.; Florea, A.; Cristea, C.; Săndulescu, R. Electrochemical detection and removal of pharmaceuticals in waste waters. Curr. Opin. Electrochem. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Görmez, F.; Görmez, Ö.; Gözmen, B.; Kalderis, D. Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst. J. Environ. Chem. Eng. 2019, 7, 102990. [Google Scholar] [CrossRef]
- Seid-Mohammadi, A.; Ghorbanian, Z.; Asgari, G.; Dargahi, A. Photocatalytic degradation of metronidazole (MNZ) antibiotic in aqueous media using copper oxide nanoparticles activated by H2O2/UV process: Biodegradability and kinetic studies. Desalination Water Treat. 2020, 193, 369–380. [Google Scholar] [CrossRef]
- Asgari, E.; Esrafili, A.; Jafari, A.J.; Kalantary, R.R.; Nourmoradi, H.; Farzadkia, M. The Comparison of ZnO/polyaniline Nanocomposite under UV and Visible Radiations for Decomposition of Metronidazole: Degradation Rate, Mechanism and Mineralization. Process Saf. Environ. Prot. 2019, 128, 65–76. [Google Scholar] [CrossRef]
- Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C 2016, 59, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.P.; Ribeiro, F.W.P.; Oliveira, T.M.B.F.; Salazar-Banda, G.R.; de Lima-Neto, P.; Morais, S.; Correia, A.N. Electroanalysis of Pharmaceuticals on Boron-Doped Diamond Electrodes: A Review. ChemElectroChem 2019, 6, 2350–2378. [Google Scholar] [CrossRef]
- Nolasco, S.L.; Roa, G.; Gomez, R.M.; Balderas, P.; Ibarra, P. Degradation of Metronidazole in Aqueous Solution by Electrochemical Peroxidation. ECS Trans. 2013, 47, 25–33. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Dolatabadi, M. Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere 2018, 212, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Farzadkia, M.; Bazrafshan, E.; Esrafili, A.; Yang, J.-K.; Shirzad-Siboni, M. Photocatalytic degradation of Metronidazole with illuminated TiO2 nanoparticles. J. Environ. Health Sci. Eng. 2015, 13, 35. [Google Scholar] [CrossRef]
- Cheng, W.; Yang, M.; Xie, Y.; Fang, Z.; Nan, J.; Tsang, P.E. Electrochemical degradation of the antibiotic metronidazole in aqueous solution by the Ti/SnO2–Sb–Ce anode. Environ. Technol. 2013, 34, 2977–2987. [Google Scholar] [CrossRef]
- Parashar, D.; Achari, G.; Kumar, M. Facile synthesis of silver doped ZnO nanoparticles by thermal decomposition method for photocatalytic degradation of metronidazole under visible light. J. Environ. Chem. Eng. 2024, 12, 113205. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, J.; Qiu, X.; Qiu, X.; Cheng, W.; Zhu, L. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 2011, 268, 60–67. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, Q.; Li, G.; Tu, X.; Zhou, Y.; Hu, X. Biodegradability enhancement of real antibiotic metronidazole wastewater by a modified electrochemical Fenton. J. Taiwan Inst. Chem. Eng. 2019, 96, 256–263. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Fu, K.; Deng, H.; Shi, J. Degradation of metronidazole by UV/chlorine treatment: Efficiency, mechanism, pathways and DBPs formation. Chemosphere 2019, 224, 228–236. [Google Scholar] [CrossRef]
- Ré, J.L.; De Méo, M.P.; Laget, M.; Guiraud, H.; Castegnaro, M.; Vanelle, P.; Duménil, G. Evaluation of the genotoxic activity of metronidazole and dimetridazole in human lymphocytes by the comet assay. Mutat. Res. Mol. Mech. Mutagen. 1997, 375, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Vicente, D.; Pérez-Trallero, E. Tetraciclinas, sulfamidas y metronidazol. Enfermedades Infecc. Y Microbiol. Clin. 2010, 28, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Lin, J.; Zhang, S.; Liu, Y. Degradation of metronidazole by radio frequency discharge in an aqueous solution. Plasma Process. Polym. 2018, 15, 1700176. [Google Scholar] [CrossRef]
- Chianeh, F.N.; Parsa, J.B. Electrochemical degradation of metronidazole from aqueous solutions using stainless steel anode coated with SnO2 nanoparticles: Experimental design. Taiwan Inst. Chem. Eng. 2016, 59, 424–432. [Google Scholar] [CrossRef]
- Pérez, T.; Garcia-Segura, S.; El-Ghenymy, A.; Nava, J.L.; Brillas, E. Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor. Electrochimica Acta 2015, 165, 173–181. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, P.; Pu, Y.; Xuan, S.; Wang, P.; Zhang, Y. Electrochemical degradation of spent tributyl phosphate extractant by a boron-doped diamond anode. J. Radioanal. Nucl. Chem. 2018, 315, 29–37. [Google Scholar] [CrossRef]
- Siedlecka, E.M.; Ofiarska, A.; Borzyszkowska, A.F.; Białk-Bielińska, A.; Stepnowski, P.; Pieczyńska, A. Cytostatic drug removal using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity. Water Res. 2018, 144, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Palma, R.A.T. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res. 2019, 154, 349–360. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Antibiotics from Water. An Overview. Water 2020, 12, 1–50. [Google Scholar]
- Ammar, H.B.; Ben Brahim, M.; Abdelhédi, R.; Samet, Y. Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation. Sep. Purif. Technol. 2016, 157, 9–16. [Google Scholar] [CrossRef]
- Aboudalle, A.; Djelal, H.; Fourcade, F.; Domergue, L.; Assadi, A.A.; Lendormi, T.; Taha, S.; Amrane, A. Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement. J. Hazard. Mater. 2018, 359, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.; Saéz, C.; Lanza, M.; Cañizares, P.; A Rodrigo, M. Towards the scale-up of electrolysis with diamond anodes: Effect of stacking on the electrochemical oxidation of 2,4 D. J. Chem. Technol. Biotechnol. 2016, 91, 742–747. [Google Scholar] [CrossRef]
- García-Montaño, J.; Pérez-Estrada, L.; Oller, I.; Maldonado, M.I.; Torrades, F.; Peral, J. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J. Photochem. Photobiol. A Chem. 2008, 195, 205–214. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Alsaadi, A.; Nunes, S.; Amy, G. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions. J. Membr. Sci. 2014, 455, 103–112. [Google Scholar] [CrossRef]
- Herrera-Melián, J.; Martín-Rodríguez, A.; Ortega-Méndez, A.; Araña, J.; Doña-Rodríguez, J.; Pérez-Peña, J. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. J. Environ. Manag. 2012, 105, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Avilés-García, O.; Mendoza-Zepeda, A.; Regalado-Méndez, A.; Espino-Valencia, J.; Martínez-Vargas, S.L.; Romero, R.; Natividad, R. Photo-Oxidation of Glycerol Catalyzed by Cu/TiO2. Catalysts 2022, 12, 835. [Google Scholar] [CrossRef]
- Amado-Piña, D.; Roa-Morales, G.; Molina-Mendieta, M.; Balderas-Hernández, P.; Romero, R.; Díaz, C.E.B.; Natividad, R. E-peroxone process of a chlorinated compound: Oxidant species, degradation pathway and phytotoxicity. J. Environ. Chem. Eng. 2022, 10, 108148. [Google Scholar] [CrossRef]
- 5815-1:2003E; Water Quality—Determination of Biochemical Oxygen Demand After n Days (BODn). International Organization for Standardization: Geneva, Switzerland, 2003; p. 15.
- Liao, Y.; Ye, Y.; Chen, X.; Xin, H.; Ma, S.; Lin, S.; Luo, H. Treatment of metronidazole pharmaceutical wastewater using pulsed switching peroxi-coagulation combined with electro-Fenton process. Water Cycle 2024, 5, 167–175. [Google Scholar] [CrossRef]
- Yu, X.; Mao, C.; Wang, W.; Kulshrestha, S.; Zhang, P.; Usman, M.; Zong, S.; Hilal, M.G.; Fang, Y.; Han, H.; et al. Reduction of metronidazole in municipal wastewater and protection of activated sludge system using a novel immobilized Aspergillus tabacinus LZ-M. Bioresour. Technol. 2023, 369, 128509. [Google Scholar] [CrossRef]
- Arias, A.N.A.; Calle, J.R.; Villaseñor, E.A.; Hernández, J.A. Remoción fotocatalítica de dqo, dbo5 y cot de efluentes de la industria farmacéutica. Rev. Politécnica 2012, 8, 9–17. [Google Scholar]
- Wang, Y.-L.; Gómez-Avilés, A.; Zhang, S.; Rodriguez, J.; Bedia, J.; Belver, C. Metronidazole photodegradation under solar light with UiO-66-NH2 photocatalyst: Mechanisms, pathway, and toxicity assessment. J. Environ. Chem. Eng. 2023, 11, 109744. [Google Scholar] [CrossRef]
- Pérez, G.; Ibáñez, R.; Urtiaga, A.; Ortiz, I. Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes. Chem. Eng. J. 2012, 197, 475–482. [Google Scholar] [CrossRef]
- García-Orozco, V.M.; Linares-Hernández, I.; Natividad, R.; Balderas-Hernández, P.; Alanis-Ramírez, C.; Barrera-Díaz, C.E.; Roa-Morales, G. Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment. J. Environ. Chem. Eng. 2022, 10, 107969. [Google Scholar] [CrossRef]
- Santana, D.R.; Espino-Estévez, M.; Santiago, D.E.; Méndez, J.; González-Díaz, O.; Doña-Rodríguez, J. Treatment of aquaculture wastewater contaminated with metronidazole by advanced oxidation techniques. Environ. Nanotechnol. Monit. Manag. 2017, 8, 11–24. [Google Scholar] [CrossRef]
- Liao, H.; Fang, J.; Wang, J.; Long, X.; Zhang, I.Y.; Huang, R. Effective Degradation of Metronidazole through Electrochemical Activation of Peroxymonosulfate: Mechanistic Insights and Implications. Energies 2024, 17, 1750. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Murrieta, M.F.; Aguilar, Z.G.; Rodríguez, J.F.; Márquez, A.A.; León, M.I.; Nava, J.L. Recent advances in electrochemical flow reactors used in advanced oxidation processes: A critical review. Chem. Eng. J. 2024, 496, 153935. [Google Scholar] [CrossRef]
- Flores, O.J.; Nava, J.L.; Carreño, G.; Elorza, E.; Martínez, F. Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem. Eng. Sci. 2013, 97, 1–6. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Valentín-Reyes, J.; Rosales, M.; Nava, J.L. Simulations of aluminum dosage and H2O-H2 flow in a pre-pilot twelve-cell electrocoagulation stack. Chem. Eng. J. 2022, 450, 138222. [Google Scholar] [CrossRef]
- Clematis, D.; Delucchi, M.; Panizza, M. Electrochemical technologies for wastewater treatment at pilot plant scale. Curr. Opin. Electrochem. 2022, 37, 101172. [Google Scholar] [CrossRef]
- Virruso, G.; Cassaro, C.; Culcasi, A.; Cipollina, A.; Tamburini, A.; Bogle, I.D.L.; Micale, G.D. Multi-scale modelling of an electrodialysis with bipolar membranes pilot plant and economic evaluation of its potential. Desalination 2024, 583, 117724. [Google Scholar] [CrossRef]
Characteristic | Metronidazole (MTZ) | Units |
---|---|---|
Molecular formula | C6H9N3O3 | |
Chemical structure | - | |
Molecular weight | 171.2 | g mol−1 |
Water solubility | 9.5 | g L−1, 25 °C |
Melting point | 159–163 | °C |
pKa | 2.55 | - |
LogKow | −0.02 | - |
Koc | 23 | - |
λ | 320 | nm |
Vp | 4.07 × 10−7 | Pa |
Cell Characteristics | |
---|---|
Electrode material | BDD/silicon anode Stainless steel cathode |
Flow rate (L h−1) | 286.92 |
Electrode geometry | Disc |
Anode surface (cm2) | 78.53 |
Feed tank volume (L) | 16 |
Inner electrode gap (mm) | 5 |
Current Density (mA cm−2) | k1 (min−1) | r2 | t1/2 (min) |
---|---|---|---|
100 | 0.0258 | 0.9641 | 26.8661 |
50 | 0.0083 | 0.9802 | 83.5117 |
30 | 0.0019 | 0.9721 | 364.8143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado Domínguez, S.M.; Barrera-Díaz, C.E.; Balderas Hernández, P.; Amado-Piña, D.; Torres-Blancas, T.; Roa-Morales, G. Metronidazole Electro-Oxidation Degradation on a Pilot Scale. Catalysts 2025, 15, 29. https://doi.org/10.3390/catal15010029
Maldonado Domínguez SM, Barrera-Díaz CE, Balderas Hernández P, Amado-Piña D, Torres-Blancas T, Roa-Morales G. Metronidazole Electro-Oxidation Degradation on a Pilot Scale. Catalysts. 2025; 15(1):29. https://doi.org/10.3390/catal15010029
Chicago/Turabian StyleMaldonado Domínguez, Sandra María, Carlos Eduardo Barrera-Díaz, Patricia Balderas Hernández, Deysi Amado-Piña, Teresa Torres-Blancas, and Gabriela Roa-Morales. 2025. "Metronidazole Electro-Oxidation Degradation on a Pilot Scale" Catalysts 15, no. 1: 29. https://doi.org/10.3390/catal15010029
APA StyleMaldonado Domínguez, S. M., Barrera-Díaz, C. E., Balderas Hernández, P., Amado-Piña, D., Torres-Blancas, T., & Roa-Morales, G. (2025). Metronidazole Electro-Oxidation Degradation on a Pilot Scale. Catalysts, 15(1), 29. https://doi.org/10.3390/catal15010029