Innovative Catalytic Materials for Environmental Remediation and Energy Applications
1. Introduction
2. Overview of Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Zhu, W.; Kamali, A.R. Molten Salt-Assisted Catalytic Preparation of MoS2/α-MoO3/Graphene as High-Performance Anode of Li-Ion Battery. Catalysts 2023, 13, 499.
- Alshammari, B.H.; Begum, H.; Ibrahim, F.A.; Hamdy, M.S.; Oyshi, T.A.; Khatun, N.; Hasnat, M.A. Electrocatalytic Hydrogen Evolution Reaction from Acetic Acid over Gold Immobilized Glassy Carbon Surface. Catalysts 2023, 13, 744.
- Kokkinou, N.; Xydas, F.; Brosda, S.; Kyriakou, G.; Katsaounis, A. Electrochemical Promotion of CO2 Hydrogenation Using Rh Catalysts Supported on O2− Conducting Solid Electrolyte. Catalysts 2023, 13, 1014.
- Shlyakhtin, O.A.; Timofeev, G.M.; Malyshev, S.A.; Loktev, A.S.; Mazo, G.N.; Shatalova, T.; Arkhipova, V.; Roslyakov, I.V.; Dedov, A.G. Nd2−xSrxNiO4 Solid Solutions: Synthesis, Structure and Enhanced Catalytic Properties of Their Reduction Products in the Dry Reforming of Methane. Catalysts 2023, 13, 966.
- Kraia, T.; Varvoutis, G.; Marnellos, G.E.; Konsolakis, M. Unveiling the Role of In Situ Sulfidation and H2O Excess on H2S Decomposition to Carbon-Free H2 over Cobalt/Ceria Catalysts. Catalysts 2023, 13, 504.
- Kouroumlidis, A.; Bampos, G.; Panagiotopoulou, P.; Kondarides, D.I. Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions. Catalysts 2023, 13, 372.
- Safakas, A.; Kournoutis, V.C.; Bampos, G.; Bebelis, S. CO and Propane Combustion on La0.8Sr0.2CoxFe1−xO3−δ Perovskites: Effect of Fe-to-Co Ratio on Catalytic Activity. Catalysts 2023, 13, 1342.
- Zhang, H.; Zhang, Y.; Song, H.; Cui, Y.; Xue, Y.; Wu, C.; Pan, C.; Xu, J.; Qiu, J.; Xu, L.; et al. Transition Metal (Fe2O3, Co3O4 and NiO)-Promoted CuO-Based α-MnO2 Nanowire Catalysts for Low-Temperature CO Oxidation. Catalysts 2023, 13, 588.
- Lampropoulos, A.; Karakoulia, S.A.; Varvoutis, G.; Spyridakos, S.; Binas, V.; Zouridi, L.; Stefa, S.; Konsolakis, M.; Marnellos, G.E. The Combined Impact of Ni-Based Catalysts and a Binary Carbonate Salts Mixture on the CO2 Gasification Performance of Olive Kernel Biomass Fuel. Catalysts 2023, 13, 596.
- Chowdhury, A.; Bhattacharjee, S.; Chongdar, S.; Malakar, B.; Maity, A.; Bhaumik, A. A New Mixed-Metal Phosphate as an Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction. Catalysts 2023, 13, 1053.
- Chidhambaram, N.; Kay, S.J.; Priyadharshini, S.; Meenakshi, R.; Sakthivel, P.; Dhanbalan, S.; Shanavas, S.; Kamaraj, S.-K.; Thirumurugan, A. Magnetic Nanomaterials as Catalysts for Syngas Production and Conversion. Catalysts 2023, 13, 440.
References
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Ogo, S.; Sekine, Y. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review. Fuel Process. Technol. 2020, 199, 106238. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.-C.; Gao, F. A review on lifetime prediction of proton exchange membrane fuel cells system. J. Power Sources 2022, 529, 231256. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef]
- Ferreira, A.P.R.A.; Oliveira, R.C.P.; Mateus, M.M.; Santos, D.M.F. A Review of the Use of Electrolytic Cells for Energy and Environmental Applications. Energies 2023, 16, 1593. [Google Scholar] [CrossRef]
- Seelajaroen, H.; Spiess, S.; Haberbauer, M.; Hassel, M.M.; Aljabour, A.; Thallner, S.; Guebitz, G.M.; Sariciftci, N.S. Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly(neutral red) and chitosan modified electrodes. Sustain. Energy Fuels 2020, 4, 4238–4248. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Eftekhari, A.; Fang, B. Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int. J. Hydrogen Energy 2017, 42, 25143–25165. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Mary, N.L. Review—An Overview on Supercapacitors and Its Applications. J. Electrochem. Soc. 2022, 169, 020552. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Achak, M.; Sillanpää, M.; Barka, N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. J. Environ. Manag. 2021, 288, 112404. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)–A review of recent advances. Chem. Eng. J. 2018, 336, 170–199. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, K.; Dinesh, K.; Sun, X.; Darvishi Cheshmeh Soltani, R.; Wang, Z.; Sonawane, S.; Boczkaj, G. Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon–A review. Chem. Eng. J. 2022, 432, 134191. [Google Scholar] [CrossRef]
- Wu, K.; Si, X.; Jiang, J.; Si, Y.; Sun, K.; Yousaf, A. Enhanced degradation of sulfamethoxazole by Fe–Mn binary oxide synergetic mediated radical reactions. Environ. Sci. Pollut. Res. 2019, 26, 14350–14361. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bampos, G.; Petala, A.; Frontistis, Z. Innovative Catalytic Materials for Environmental Remediation and Energy Applications. Catalysts 2024, 14, 102. https://doi.org/10.3390/catal14020102
Bampos G, Petala A, Frontistis Z. Innovative Catalytic Materials for Environmental Remediation and Energy Applications. Catalysts. 2024; 14(2):102. https://doi.org/10.3390/catal14020102
Chicago/Turabian StyleBampos, Georgios, Athanasia Petala, and Zacharias Frontistis. 2024. "Innovative Catalytic Materials for Environmental Remediation and Energy Applications" Catalysts 14, no. 2: 102. https://doi.org/10.3390/catal14020102
APA StyleBampos, G., Petala, A., & Frontistis, Z. (2024). Innovative Catalytic Materials for Environmental Remediation and Energy Applications. Catalysts, 14(2), 102. https://doi.org/10.3390/catal14020102