Boosting Hydrogen Evolution Behaviors of Porous Nickel Phosphate by Phosphorization Engineering
Abstract
:1. Introduction
2. Results and Discussions
2.1. Schematic Diagram
2.2. Structural Properties (SEM, TEM, XRD, XPS)
2.2.1. SEM and TEM
2.2.2. XPS
2.3. The Electrocatalytic Testing for Hydrogen Generation
3. Materials and Methods
3.1. The Preparation of Porous/Smooth (p/s)-Ni(OH)2/Ti
3.2. The Preparation of Porous/Smooth (p/s)-NiPO/Ti
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Jia, C.; Bai, F.; Wang, W.; An, S.; Zhao, K.; Li, Z.; Li, J.; Sun, H. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 2024, 355, 129455. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M.; Al-Jiboory, A.K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. J. Energy Storage 2023, 72, 108404. [Google Scholar] [CrossRef]
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Guo, Y.; Zhao, X.; Pan, D.; Li, K.; Wen, Z. Electrochemical Hydrogen Generation by Oxygen Evolution Reaction-Alternative Anodic Oxidation Reactions. Adv. Energy Sustain. Res. 2022, 3, 2200005. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, J.; Wang, P.; Li, Z.; Zhou, H.; Xu, C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin. J. Chem. Eng. 2022, 43, 282–296. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, X.; Yu, B.; Zhang, W.; Zhu, X.; Liu, Z. Engineering of P vacancies and phosphate on Fe-doped Ni2P nanosheet arrays for enhanced oxygen evolution. J. Alloys Compd. 2022, 905, 164023. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Lee, E.B.; Jo, S.G.; Park, G.-R.; Lee, J.; Kim, C.-S.; Kim, S.J.; Lee, J.W. Facile and fast route of electrodepositing chloride ion-modified NiFePt layered double hydroxides for hydrogen evolution reaction. Appl. Surf. Sci. 2024, 662, 160112. [Google Scholar] [CrossRef]
- Sun, J.; Ren, M.; Yu, L.; Yang, Z.; Xie, L.; Tian, F.; Yu, Y.; Ren, Z.; Chen, S.; Zhou, H. Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays. Small 2019, 15, 1804272. [Google Scholar] [CrossRef]
- Bhavanari, M.; Lee, K.-R.; Tseng, C.-J.; Su, B.-J.; Chen, J.-M.; Chang, J.-K.; Bhattacharyya, A.J.; Su, C.-Y. New insights into interface charge-transfer mechanism of copper-iron layered double hydroxide cathodic electrocatalyst in alkaline electrolysis. J. Environ. Chem. Eng. 2022, 10, 107287. [Google Scholar] [CrossRef]
- Xiong, L.; Qiu, Y.; Peng, X.; Liu, Z.; Chu, P.K. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 2022, 104, 107882. [Google Scholar] [CrossRef]
- Jin, X.; Li, X.; Lei, H.; Guo, K.; Lv, B.; Guo, H.; Chen, D.; Zhang, W.; Cao, R. Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments. J. Energy Chem. 2021, 63, 659–666. [Google Scholar] [CrossRef]
- Sun, H.; Kim, H.; Song, S.; Jung, W. Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Mater. Rep. Energy 2022, 2, 100092. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, K.; Du, H.; Li, X. In situ electrodeposition synthesis of CoP@NiFe LDH heterostructure as high-performance electrocatalyst for enhanced seawater electrolysis. Int. J. Hydrogen Energy 2024, 62, 722–731. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhou, H.Q.; Yu, F.; Wu, C.M.; Chung, L.H.; Yu, L.; He, J. Microenvironment Regulation of Metal-Organic Frameworks to Anchor Transition Metal Ions for the Electrocatalytic Hydrogen Evolution Reaction. Inorg Chem 2022, 61, 19475–19482. [Google Scholar] [CrossRef]
- Cao, F.; Li, M.; Hu, Y.; Wu, X.; Li, X.; Meng, X.; Zhang, P.; Li, S.; Qin, G. Kinetically accelerated oxygen evolution reaction in metallic (oxy)hydroxides enabled by Cr-dopant and heterostructure. Chem. Eng. J. 2023, 472, 144970. [Google Scholar] [CrossRef]
- Hu, Y.; Xiong, T.; Balogun, M.S.J.T.; Huang, Y.; Adekoya, D.; Zhang, S.; Tong, Y. Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni–Fe nitride nanoparticles. Mater. Today Phys. 2020, 15, 100267. [Google Scholar] [CrossRef]
- Mondal, A.; Vomiero, A. 2D Transition Metal Dichalcogenides-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 2208994. [Google Scholar] [CrossRef]
- Gao, M.; Gao, P.; Lei, T.; Ouyang, C.; Wu, X.; Wu, A.; Du, Y. FeP/Ni2P nanosheet arrays as high-efficiency hydrogen evolution electrocatalysts. J. Mater. Chem. A 2022, 10, 15569–15579. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, B.; Peng, Q.; Yu, Y.; Zhou, J.; Sun, Z. MXenes modified by single transition metal atom for hydrogen evolution reaction catalysts. Appl. Surf. Sci. 2021, 562, 150151. [Google Scholar] [CrossRef]
- Anne Acedera, R.; Theresse Dumlao, A.; Donn Matienzo, D.J.; Divinagracia, M.; Anne Paraggua, J.; Abel Chuang, P.-Y.; Ocon, J. Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions. J. Energy Chem. 2024, 89, 646–669. [Google Scholar] [CrossRef]
- Duan, D.; Feng, J.; Guo, D.; Gao, J.; Liu, S.; Wang, Y.; Zhou, X. MOF-derived cobalt manganese phosphide as highly efficient electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 12927–12936. [Google Scholar] [CrossRef]
- Luo, S.; Hei, P.; Wang, R.; Yin, J.; Hong, W.; Liu, S.; Bai, Z.; Jiao, T. Facile synthesis of cobalt phosphide nanoparticles as highly active electrocatalysts for hydrogen evolution reaction. Colloids Surf. A 2020, 600, 124925. [Google Scholar] [CrossRef]
- Liu, L.; Meng, F.; Wang, H.; Ma, S.; Lukyanov, D.; Zhu, W.; Li, Y.; Ren, P.; Kondratiev, V.; Yang, P.; et al. Insight into the electronic modulation on nickel-cobalt bimetallic phosphates towards high-efficiency electrocatalytic hydrogen evolution. J. Alloys Compd. 2024, 1002, 175259. [Google Scholar] [CrossRef]
- Wang, K.; Sun, X.; Huang, W.; Cao, Q.; Zhao, Y.; Ding, R.; Liu, E.; Gao, P.; Lin, W. Superhydrophilic nickel cyclotetraphosphate for the hydrogen evolution reaction in acidic solution. Dalton Trans. 2021, 50, 12435–12439. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, C.; Chen, T.; Zhao, X.; Li, Z.; Hao, J. A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution reaction. Nanotechnology 2020, 31, 505402. [Google Scholar] [CrossRef]
- Mehdi, S.M.Z.; Ali, M.; Maqsood, M.F.; Abbas, N.; Lee, N. Synthesis of nickel phosphate nanowires as a bifunctional catalyst for water electrolysis in alkaline media. J. Alloys Compd. 2024, 988, 174250. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Liu, L.; Park, S. One-Pot Synthesis of Nanoporous Nickel Hydroxide Film as High-Performance Electrode for Asymmetric Supercapacitor. J. Electrochem. Soc. 2019, 166, D595–D602. [Google Scholar] [CrossRef]
- Bian, W.; Huang, Y.; Xu, X.; Ud Din, M.A.; Xie, G.; Wang, X. Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Appl. Mater. Interfaces 2018, 10, 9407–9414. [Google Scholar] [CrossRef]
- Lv, S.; Sun, Y.; Liu, D.; Song, C.; Wang, D. Construction of S-Scheme heterojunction Ni11(HPO3)8(OH)6/CdS photocatalysts with open framework surface for enhanced H2 evolution activity. J. Colloid Interface Sci. 2023, 634, 148–158. [Google Scholar] [CrossRef]
- Gupta, N.; Bhattacharya, P. Microwave-plasma induced one-step synthesis of Ni(PO3)2 nanosphere-loaded bio-waste derived N, P co-doped carbon for an asymmetric supercapacitor with prolonged life. J. Mater. Chem. C 2023, 11, 13503–13517. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Zhao, S.; Parkin, I.P.; Tian, Z.; Lai, F.; Liu, T.; He, G. Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution. Green Energy Environ. 2023, 8, 1450–1458. [Google Scholar] [CrossRef]
- Singh, T.I.; Maibam, A.; Cha, D.C.; Yoo, S.; Babarao, R.; Lee, S.U.; Lee, S. High-Alkaline Water-Splitting Activity of Mesoporous 3D Heterostructures: An Amorphous-Shell@Crystalline-Core Nano-Assembly of Co-Ni-Phosphate Ultrathin-Nanosheets and V- Doped Cobalt-Nitride Nanowires. Adv. Sci. 2022, 9, 2201311. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, Y.; Shao, M.; Hou, J.; Chen, X.; Fan, L.; Kong, F.; Chen, M. Controlled synthesis of self-supportive hydrangea shaped Ni based hydroxide/phosphide for efficient overall water splitting and full pH hydrogen evolution. Fuel 2024, 367, 131551. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Guo, H.; Zhang, H.; Ren, J.; Song, R. Rational Regulation of Crystalline/Amorphous Microprisms-Nanochannels Based on Molecular Sieve (VSB-5) for Electrochemical Overall Water Splitting. Small 2022, 18, 2200832. [Google Scholar] [CrossRef]
- Li, S.-S.; Zhao, X.-H.; Wang, K.-X.; Chen, J.-S. Tailoring the growth route of lithium peroxide through the rational design of a sodium-doped nickel phosphate catalyst for lithium–oxygen batteries. Chem. Commun. 2023, 59, 11839–11842. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Ren, J.-T.; Wang, L.; Sun, M.-L.; Yang, H.-M.; Lv, X.-W.; Yuan, Z.-Y. Synergistically enhanced activity and stability of bifunctional nickel phosphide/sulfide heterointerface electrodes for direct alkaline seawater electrolysis. J. Energy Chem. 2022, 75, 66–73. [Google Scholar] [CrossRef]
- Surendran, S.; Sivanantham, A.; Shanmugam, S.; Sim, U.; Kalai Selvan, R. Ni2P2O7 microsheets as efficient Bi-functional electrocatalysts for water splitting application. Sustainable Energy Fuels 2019, 3, 2435–2446. [Google Scholar] [CrossRef]
- Chang, J.; Lv, Q.; Li, G.; Ge, J.; Liu, C.; Xing, W. Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis. Appl. Catal. B 2017, 204, 486–496. [Google Scholar] [CrossRef]
- Babar, P.T.; Lokhande, A.C.; Jo, E.; Pawar, B.S.; Gang, M.G.; Pawar, S.M.; Kim, J.H. Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting. J. Ind. Eng. Chem. 2019, 70, 116–123. [Google Scholar] [CrossRef]
- Babar, P.T.; Lokhande, A.C.; Shim, H.J.; Gang, M.G.; Pawar, B.S.; Pawar, S.M.; Kim, J.H. SILAR deposited iron phosphate as a bifunctional electrocatalyst for efficient water splitting. J. Colloid Interface Sci. 2019, 534, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhou, X.-Y.; Zhao, Y.-X.; Liu, J.-L.; Chen, X.-Y. Optimization of Functional Blocks of Organic Ligands Regulating the Electrocatalytic Hydrogen Evolution Reaction of Co(II)- or Ni(II)-Based Organic Frameworks/Nickel Foam Composites. ACS Appl. Energy Mater. 2023, 6, 10682–10693. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, D. 3D nanoporous NiCoP as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline electrolyte. New J. Chem. 2022, 46, 7490–7496. [Google Scholar] [CrossRef]
- Lv, X.; Tian, W.; Liu, Y.; Yuan, Z.-Y. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc–air batteries. Mater. Chem. Front. 2019, 3, 2428–2436. [Google Scholar] [CrossRef]
- Qian, X.; Wu, J.; Yang, Y.; Zhang, W.; Zheng, H.; Xia, J.; Chen, M.; Chen, W. Ni-CoS2@MoS2 hollow nanorod array in-situ synthesized on Ti foil as Pt-free self-supporting electrode for efficient wide-pH hydrogen evolution. Appl. Surf. Sci. 2024, 655, 159629. [Google Scholar] [CrossRef]
- Barua, S.; Balčiūnaitė, A.; Vaičiūnienė, J.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Bimetallic 3D Nickel-Manganese/Titanium Bifunctional Electrocatalysts for Efficient Hydrogen and Oxygen Evolution Reaction in Alkaline and Acidic Media. Coatings 2023, 13, 1102. [Google Scholar] [CrossRef]
Catalyst | Thermal Treatment Conditions | Electrolyte | Overpotential at 10 mA cm−2 (mV) | Tafel Slope (mV dec−1) | Reference |
---|---|---|---|---|---|
p-NiPO/Ti | 300 °C@10 min | 1 M KOH | 128 | 79.2 | This work |
Ni2P4O12/NF | 400 °C@2 h | 1 M KOH | 116 | 97 | [26] |
NiPO/NF | 180 °C@15 h | 1 M KOH | 158 | 80 | [27] |
Ni2P7O7 microsheets | 200 °C@18 h | 1 M KOH | 185 | 115.1 | [38] |
Ni12P5/Ni3(PO4)2–SS | 150 °C@12 h | 1 M KOH | 145 | 105.7 | [39] |
FeNi(PO4)(OH)/NF | / | 1 M KOH | 145 | 51 | [40] |
FePi/NF | / | 1 M KOH | 157 | 47 | [41] |
NiP@Ni5P4/NF | 350 °C@2 h | 1 M KOH | 159 | 84.4 | [42] |
3D nanoporous NiCoP | 350 °C@2 h | 1 M KOH | 130 | 93 | [43] |
CoP/Ni2P@NC | 180 °C@36 h | 1 M KOH | 143 | 76 | [44] |
Ni-CoS2@MoS2/Ti | 350 °C@/ | 1 M KOH | 153 | 65.8 | [45] |
NiMn/Ti | / | 1 M KOH | 127.1 | 185 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Xu, Y.; Zhang, L.; Peng, L.; Wang, H.; Liu, L.; Liu, P. Boosting Hydrogen Evolution Behaviors of Porous Nickel Phosphate by Phosphorization Engineering. Catalysts 2024, 14, 757. https://doi.org/10.3390/catal14110757
He T, Xu Y, Zhang L, Peng L, Wang H, Liu L, Liu P. Boosting Hydrogen Evolution Behaviors of Porous Nickel Phosphate by Phosphorization Engineering. Catalysts. 2024; 14(11):757. https://doi.org/10.3390/catal14110757
Chicago/Turabian StyleHe, Tao, Yuan Xu, Liqiu Zhang, Lishan Peng, Hongdan Wang, Lichun Liu, and Ping Liu. 2024. "Boosting Hydrogen Evolution Behaviors of Porous Nickel Phosphate by Phosphorization Engineering" Catalysts 14, no. 11: 757. https://doi.org/10.3390/catal14110757
APA StyleHe, T., Xu, Y., Zhang, L., Peng, L., Wang, H., Liu, L., & Liu, P. (2024). Boosting Hydrogen Evolution Behaviors of Porous Nickel Phosphate by Phosphorization Engineering. Catalysts, 14(11), 757. https://doi.org/10.3390/catal14110757