Dehydration of Isopropanol over Silica-Supported Heteropoly Acids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Dehydration of Isopropanol over HPA/SiO2 Catalysts
2.2.1. Effect of Temperature
2.2.2. Dehydration of i-PrOH Catalyzed by Zeolites
2.2.3. Dehydration of i-PrOH Catalyzed by HPA/SiO2: Effect of i-PrOH Partial Pressure
2.2.4. Stability of Catalyst Performance
3. Materials and Methods
3.1. Catalysts
3.2. Catalyst Characterization
3.3. Catalyst Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hattori, H.; Ono, Y. Solid Acid Catalysis. From Fundamentals to Applications; CRC Press: Baco Raton, FL, USA, 2015. [Google Scholar]
- Macht, J.; Janik, M.; Neurock, M.; Iglesia, E. Mechanistic consequences of composition in acid catalysis by polyoxometalate Keggin clusters. J. Am. Chem. Soc. 2008, 130, 10369–10379. [Google Scholar] [CrossRef] [PubMed]
- Alsalme, A.M.; Wiper, P.V.; Khimyak, Y.Z.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Solid acid catalysts based on H3PW12O40 heteropoly acid: Acid and catalytic properties at a gas-solid interface. J. Catal. 2010, 276, 181–189. [Google Scholar] [CrossRef]
- Bond, G.C.; Frodsham, S.J.; Jubb, P.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Compensation effect in isopropanol dehydration over heteropoly acid catalysts at a gas-solid interface. J. Catal. 2012, 293, 158–164. [Google Scholar] [CrossRef]
- Alasmari, A.; Al-Faze, R.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Solid acid catalysts comprising heteropoly acids supported on SiO2, TiO2 and ZrO2: A microcalorimetric investigation of catalyst acidity and new insight into the mechanism of alcohol dehydration over HPA. Catal. Commun. 2023, 180, 106710. [Google Scholar] [CrossRef]
- Gervasini, A.; Fenyvesi, J.; Auroux, A. Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition. Catal. Lett. 1997, 43, 219–228. [Google Scholar] [CrossRef]
- Weissermel, K.; Arpe, H.J. Industrial Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Dubois, J.L.; Postole, G.; Silvester, L.; Auroux, A. Catalytic dehydration of isopropanol to propylene. J. Catal. 2022, 12, 1097. [Google Scholar] [CrossRef]
- Liew, F.E.; Nogle, R.; Abdalla, T.; Rasor, B.J.; Canter, C.; Jensen, R.O.; Wang, L.; Strutz, J.; Chirania, P.; De Tissera, S.; et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 2022, 40, 335–344. [Google Scholar] [CrossRef]
- Klabunde, J.; Bischoff, C.; Papa, A.J. Propanols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Okuhara, T.; Mizuno, N.; Misono, M. Catalytic chemistry of heteropoly compounds. Adv. Catal. 1996, 41, 113–252. [Google Scholar]
- Mizuno, N.; Misono, M. Heterogeneous catalysis. Chem. Rev. 1998, 98, 199–217. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V. Catalysis by Polyoxometalates. In Catalysts for Fine Chemicals; Wiley: Chichester, UK, 2002; Volume 2. [Google Scholar]
- Moffat, J.B. Metal-Oxygen Clusters. The Surface and Catalytic Properties of Heteropoly Oxometalates; Kluwer: New York, NY, USA, 2001. [Google Scholar]
- Misono, M. Heterogeneous Catalysis of Mixed Oxides. Perovskite and Heteropoly Catalysts; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Misono, M. A view on the future of mixed oxide catalysts: The case of heteropolyacids (polyoxometalates) and perovskites. Catal. Today 2005, 100, 95–100. [Google Scholar] [CrossRef]
- Dobson, I.D. Leaps of innovation. Green Chem. 2003, 5, G78–G81. [Google Scholar]
- Van Wettere, B.; Aghakhani, S.; Lauwaert, J.; Thybaut, J.W. Ethyl acetate synthesis by direct addition of acetic acid to ethylene on a silicotungstic acid catalyst: Experimental assessment of the kinetics. Appl. Catal. 2022, 646, 118849. [Google Scholar] [CrossRef]
- Ethanol to Ethylene Conversion, Hummingbird Technology. Available online: https://www.bio.org/sites/default/files/1500%20Langston.pdf (accessed on 3 January 2024).
- Al-Faze, R.; Finch, A.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Dehydration of methanol and ethanol over silica-supported heteropoly acids in the gas phase: Surface-type versus bulk-type catalysis mechanism. Appl. Catal. 2020, 597, 117549. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Vibrational investigations of polyoxometalates: Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem. 1983, 22, 207–216. [Google Scholar] [CrossRef]
- Knözinger, H. Infrared spectroscopy for the characterization of surface acidity and basicity. In Handbook of Heterogeneous Catalysis, 2nd ed.; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; Volume 2, p. 1138. [Google Scholar]
- Bardin, B.B.; Bordawekar, S.V.; Neurock, M.; Davis, R.J. Acidity of Keggin-type heteropolycompounds evaluated by catalytic probe reactions, sorption microcalorimetry, and density functional quantum chemical calculations. J. Phys. Chem. B 1998, 102, 10817–10825. [Google Scholar] [CrossRef]
- Kapustin, G.I.; Brueva, T.R.; Klyachko, A.L.; Timofeeva, M.N.; Kulikov, S.M.; Kozhevnikov, I.V. A study of the acidity of heteropoly acids. Kinet. Katal. 1990, 31, 1017–1020. [Google Scholar]
- Newman, A.D.; Brown, D.R.; Siril, P.; Lee, A.F.; Wilson, K. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts. Phys. Chem. Chem. Phys. 2006, 8, 2893–2902. [Google Scholar] [CrossRef]
- Alharbi, W.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Dehydration of MeOH to dimethyl ether over heteropoly acid catalysts: The relationship between reaction rate and catalyst acid strength. ACS Catal. 2015, 5, 7186–7193. [Google Scholar] [CrossRef]
- Brandle, M.; Sauer, J. Acidity differences between inorganic solids induced by their framework structure. a combined quantum mechanics/molecular mechanics ab initio study on zeolites. J. Am. Chem. Soc. 1998, 120, 1556–1570. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhaduri, K.; Shaha, S.; Auroux, A.; Pandeyc, J.K.; Chowdhurya, B. Dehydration of isopropanol to propylene over fullerene[C60] containing niobium phosphate catalyst: Study on catalyst recyclability. Molec. Catal. 2019, 475, 110470. [Google Scholar] [CrossRef]
- Larmier, K.; Chizallet, C.; Cadran, N.; Maury, S.; Abboud, J.; Lamic-Humblot, A.-F.; Marceau, E.; Lauron-Pernot, H. Mechanistic investigation of isopropanol conversion on alumina catalysts: Location of active sites for alkene/ether production. ACS Catal. 2015, 5, 4423–4437. [Google Scholar] [CrossRef]
- Murphy, B.M.; Wu, J.; Cho, H.J.; Soreo, J.; Wang, C.; Ma, L.; Xu, B. Nature and catalytic properties of in-situ-generated Brønsted acid sites on NaY. ACS Catal. 2019, 9, 1931–1942. [Google Scholar] [CrossRef]
- Kapteijn, F.; Marin, G.B.; Moulijn, J.A. Catalytic Reaction Engineering. In Catalysis: An Integrated Approach, 2nd ed.; van Santen, R.A., van Leeuwen, P.W.N.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 375–430. [Google Scholar]
- Derouane, E.G. Factors affecting the deactivation of zeolites by coking. Stud. Surf. Sci. Catal. 1985, 20, 221–240. [Google Scholar]
- CRC. Handbook of Chemistry and Physics, 103rd ed.; Rumble, J.R., Ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
Catalyst | SBET a m2 g−1 | Vp b cm3 g−1 | Dp c Å | Weight Loss (wt%) | −ΔH d kJ mol−1 | B e mmol g−1 | |
---|---|---|---|---|---|---|---|
RT–300 °C | 300–700 °C | ||||||
Aerosil 300 SiO2 | 293 | 1.26 | 172 | 3.64 | 0.91 | ||
25%HPW/SiO2 | 183 | 0.73 | 161 | 4.77 | 1.78 | 171 | 0.26 |
25%HSiW/SiO2 | 195 | 0.81 | 167 | 5.39 | 2.27 | 154 | 0.35 |
40%HPW/SiO2 | 139 | 0.66 | 191 | 4.36 | 1.31 | 177 | 0.42 |
40%HSiW/SiO2 | 130 | 0.56 | 172 | 4.79 | 1.52 | 158 | 0.56 |
Catalyst | SBET a m2 g−1 | Vp b cm3 g−1 | Dp c Å | Particle Size d nm | Proton Site Density e mmol g−1 |
---|---|---|---|---|---|
HZSM-5 (Si/Al = 12) | 378 | 0.22 | 24 | 54 | 1.28 |
HZSM-5 (Si/Al = 20) | 361 | 0.17 | 19 | 110 | 0.83 |
HY (Si/Al = 18) | 733 | 0.48 | 26 | 83 | 0.92 |
H-mordenite (Si/Al = 12) | 461 | 0.27 | 24 | 64 | 1.28 |
Catalyst | Ea, kJ mol−1 |
---|---|
HZSM-5 (Si/Al = 12) | 121 |
HZSM-5 (Si/Al = 20) | 116 |
HY (Si/Al = 18) | 114 |
H-mordenite (Si/Al = 12) | 98 |
25%HPW/SiO2 | 134 |
25%HSiW/SiO2 | 145 |
Catalyst | Temperature °C | i-PrOH Pressure kPa | Conversion % | Selectivity, % | |
---|---|---|---|---|---|
Propene | DIPE | ||||
25%HSiW/SiO2 | 100 | 0.95 | 99.5 | 100 | 0.0 |
100 | 5.5 | 86.4 | 97.3 | 2.7 | |
100 | 10 | 69.4 | 94.5 | 5.5 | |
100 | 15 | 57.1 | 87.5 | 12.5 | |
120 | 15 | 97.2 | 99.4 | 0.6 | |
130 | 15 | 99.3 | 100 | 0 | |
25%HPW/SiO2 | 100 | 0.95 | 99.5 | 100 | 0.0 |
100 | 5.5 | 81.3 | 99.7 | 0.3 | |
100 | 10 | 66.0 | 95.8 | 4.2 | |
100 | 15 | 49.2 | 91.2 | 8.8 | |
120 | 15 | 96.2 | 99.1 | 0.9 | |
130 | 15 | 99.3 | 100 | 0 |
Catalyst | Time on Stream, h | Carbon Content b, % |
---|---|---|
25%HPW/SiO2 | 24 | 1.8 |
25%HSiW/SiO2 | 24 | 2.2 |
25%HPW/SiO2 | 2 | 2.5 |
25%HSiW/SiO2 | 2 | 1.9 |
H-mordenite (Si/Al = 12) | 24 | 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmari, A.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Dehydration of Isopropanol over Silica-Supported Heteropoly Acids. Catalysts 2024, 14, 51. https://doi.org/10.3390/catal14010051
Alasmari A, Kozhevnikova EF, Kozhevnikov IV. Dehydration of Isopropanol over Silica-Supported Heteropoly Acids. Catalysts. 2024; 14(1):51. https://doi.org/10.3390/catal14010051
Chicago/Turabian StyleAlasmari, Amal, Elena F. Kozhevnikova, and Ivan V. Kozhevnikov. 2024. "Dehydration of Isopropanol over Silica-Supported Heteropoly Acids" Catalysts 14, no. 1: 51. https://doi.org/10.3390/catal14010051
APA StyleAlasmari, A., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2024). Dehydration of Isopropanol over Silica-Supported Heteropoly Acids. Catalysts, 14(1), 51. https://doi.org/10.3390/catal14010051