Biocatalysts Based on Immobilized Lipases for the Production of Ethyl Esters of Fatty Acids including Bioactive Gamma-Linolenic Acid from Borage Oil
Abstract
:1. Introduction
2. Results
2.1. Characterization of Borage Oil
2.2. Optimization of Conditions for Borage Oil Ethanolysis
2.3. Immobilization of TLL on Sepabeads-C18 Resines
2.4. Enzymatic Ethanolisis of Borage Oil Catalyzed by TLL Biocatalysts
2.5. Re-Use of Immobilized TLL Biocatalysts for Borage Oil Ethanolysis
2.6. Characterization of FAEE Obtained via Enzymatic and Chemical Ethanolysis
2.7. Solvent-Free Enzymatic Ethanolysis of Borage Oil
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Characterization of Borage Oil by GC-MS
3.2.2. Bradford Method for Protein Quantification
3.2.3. Immobilization of TLLs in Sepabeads-C18 Resins
3.2.4. Measurement of Enzyme Activity (p-NPB Test)
3.2.5. Borage Oil Ethanolysis by Chemical Pathway
3.2.6. Enzymatic Ethanolysis of Borage Oil
3.2.7. Analysis by HPLC-ELSD
3.2.8. Reuse of the Immobilized Biocatalyst in Reaction Cycles
3.2.9. Solvent-Free Enzymatic Ethanolysis of Borage Oil
3.2.10. Derivatization of Fatty Acids from Reaction Cycles
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ros, E.; López-Miranda, J.; Picó, C.; Rubio, M.Á.; Babio, N.; Sala-Vila, A.; Pérez-Jiménez, F.; Escrich, E.; Bulló, M.; Solanas, M.; et al. Consenso sobre las grasas y aceites en la alimentación de la población española adulta: Postura de la Federación Española de Sociedades de Alimentación, Nutrición y Dietética (FES-NAD). Nutr. Hosp. 2015, 32, 435–477. [Google Scholar] [PubMed]
- Guil-Guerrero, J.L.; Rincón-Cervera, M.; Venegas-Venegas, E. Gamma-linolenic and stearidonic acids: Purification and upgrading of C18-PUFA oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1068–1081. [Google Scholar] [CrossRef]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Barre, D.E. Potential of Evening Primrose, Borage, Black Currant, and Fungal Oils in Human Health. Ann. Nutr. Metab. 2001, 45, 47–57. [Google Scholar] [CrossRef]
- Eskin, N.A.M. Borage and evening primrose oil. Eur. J. Lipid Sci. Technol. 2008, 110, 651–654. [Google Scholar]
- Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. [Google Scholar] [CrossRef]
- Gamayurova, V.S.; Zinov’eva, M.E.; Shnaider, K.L.; Davletshina, G.A. Lipases in Esterification Reactions: A Review. Catal. Ind. 2021, 13, 58–72. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ayub, M.A.Z. Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process. Biochem. 2011, 46, 682–688. [Google Scholar] [CrossRef]
- Robles-Medina, A.; González-Moreno, P.A.; Esteban-Cerdán, L.; Molina-Grima, E. Biocatalysis: Towards ever greener biodiesel production. Biotechnol. Adv. 2009, 27, 398–408. [Google Scholar] [CrossRef]
- Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A review of the current state of biodiesel production using enzymatic transesterifi-cation. Biotechnol. Bioeng. 2009, 102, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Stamenković, O.S.; Veličković, A.V.; Veljković, V.B. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel 2011, 90, 3141–3155. [Google Scholar] [CrossRef]
- Moreno-Pérez, S.; Guisan, J.M.; Fernandez-Lorente, G. Selective Ethanolysis of Fish Oil Catalyzed by Immobilized Lipases. J. Am. Oil Chem. Soc. 2013, 91, 63–69. [Google Scholar] [CrossRef]
- Godoy, C.A.; Pardo-Tamayo, J.S.; Barbosa, O. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Int. J. Mol. Sci. 2022, 23, 9933. [Google Scholar] [CrossRef] [PubMed]
- Najjar, A.A.; Hassan, E.A.; Zabermawi, N.M.; Almasaudi, S.B.; Moulay, M.; Harakeh, S.; Abd El-Aal, M. Efficacy of the Immobilized Kocuria flava Lipase on Fe3O4/Cellulose Nanocomposite for Biodiesel Production from Cooking Oil Wastes. Catalysts 2022, 12, 977. [Google Scholar] [CrossRef]
- Ivanković, A.; Dronjić, A.; Bevanda, A.M.; Talić, S. Review of 12 Principles of Green Chemistry in Practice. Int. J. Sustain. Green Energy 2017, 6, 39. [Google Scholar] [CrossRef]
- Foster, R.H.; Hardy, G.; Alany, R.G. Borage oil in the treatment of atopic dermatitis. Nutrition 2010, 26, 708–718. [Google Scholar] [CrossRef]
- Reyero, I.; Arzamendi, G.; Zabala, S.; Gandía, L.M. Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process. Technol. 2015, 129, 147–155. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Ahmed, A.I. Ethanolysis of fish oil via optimized protocol and purification by dry washing of crude ethyl esters. J. Taiwan Inst. Chem. Eng. 2016, 58, 71–83. [Google Scholar] [CrossRef]
- Castejón, N.; Señoráns, F.J. Integrated Green and Enzymatic Process to Produce Omega-3 Acylglycerols from Echium plantagi-neum Using Immobilized Lipases. J. Am. Oil Chem. Soc. 2021, 98, 341–352. [Google Scholar] [CrossRef]
- Palomo, J.M.; Guisan, J.M. Different Strategies for Hyperactivation of Lipase Biocatalysts. In Lipases and Phospholipases: Methods and Protocols; Methods in Molecular Biology; Sandoval, G., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 329–341. [Google Scholar]
- Rodríguez, A.; Esteban, L.; Martín, L.; Jiménez, M.J.; Hita, E.; Castillo, B.; González, P.; Robles, A. Synthesis of 2-monoacylglycerols and structured tri-acylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions. Enzym. Microb. Technol. 2012, 51, 148–155. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Fernandez-Lorente, G.; Rocha-Martin, J.; Bolivar, J.M.; Guisan, J.M. Oriented Covalent Immobilization of Enzymes on Heterofunctional-Glyoxyl Supports. In Immobilization of Enzymes and Cells, 3rd ed.; Methods in Molecular Biology; Guisan, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 73–88. [Google Scholar]
- Castejón, N.; Moreno-Pérez, S.; Abreu Silveira, E.; Fernández Lorente, G.; Guisán, J.M.; Señoráns, F.J. Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chem. 2018, 271, 433–439. [Google Scholar] [CrossRef] [PubMed]
PEAK | Fatty Acid | Composition * |
---|---|---|
1 | Palmitic—16:0 | 10.75 ± 0.21 |
2 | Stearic—18:0 | 5.09 ± 0.07 |
3 | Oleic—18:1 n-9 | 20.08 ± 0.06 |
4 | Linoleic—18:2 n-6 | 36.83 ± 0.27 |
5 | Gamma-linolenic—18:3 n-6 | 20.56 ± 0.16 |
6 | Gondoic/eicosenoic—20:1 n-9 | 3.89 ± 0.06 |
7 | Erucic—22:1 n-9 | 2.02 ± 0.04 |
8 | Nervonic—24:1 n-9 | 1 ± 0.1 |
PEAK | Rt (min) 1 | Fatty Acid | Composition Chemical Ethanolysis 2 | Composition Enzymatic Ethanolisis 2 |
---|---|---|---|---|
1 | 13.356 | Palmitic—16:00 | 10.56 ± 0.16 | 13.56 ± 0.97 |
2 | 16.974 | Stearic—18:00 | 4.57 ± 0.16 | 4 ± 1 |
3 | 18.058 | Oleic—18:1 n-9 | 20.13 ± 0.09 | 22.96 ± 0.22 |
4 | 19.752 | Linoleic—18:2 n-6 | 37.65 ± 0.27 | 47.85 ± 3.92 |
5 | 20.913 | Gamma-linolenic—18:3 n-6 | 21.16 ± 0.21 | 9.70 ± 0.63 |
6 | 22.086 | Gondoic/eicosenoic—20:1 n-9 | 3.63 ± 0.01 | 1.5 ± 0.2 |
7 | 26.065 | Erucic—22:1 n-9 | 1.75 ± 0.02 | 0.5 ± 0.1 |
8 | 30.479 | Nervonic—24:1 n-9 | 0.55 ± 0.03 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzal, G.; García-González, M.; Castejón, N.; García-García, P.; Fernández-Lorente, G.; Señoráns, F.J. Biocatalysts Based on Immobilized Lipases for the Production of Ethyl Esters of Fatty Acids including Bioactive Gamma-Linolenic Acid from Borage Oil. Catalysts 2023, 13, 1275. https://doi.org/10.3390/catal13091275
Berzal G, García-González M, Castejón N, García-García P, Fernández-Lorente G, Señoráns FJ. Biocatalysts Based on Immobilized Lipases for the Production of Ethyl Esters of Fatty Acids including Bioactive Gamma-Linolenic Acid from Borage Oil. Catalysts. 2023; 13(9):1275. https://doi.org/10.3390/catal13091275
Chicago/Turabian StyleBerzal, Gonzalo, Martín García-González, Natalia Castejón, Paz García-García, Gloria Fernández-Lorente, and Francisco J. Señoráns. 2023. "Biocatalysts Based on Immobilized Lipases for the Production of Ethyl Esters of Fatty Acids including Bioactive Gamma-Linolenic Acid from Borage Oil" Catalysts 13, no. 9: 1275. https://doi.org/10.3390/catal13091275
APA StyleBerzal, G., García-González, M., Castejón, N., García-García, P., Fernández-Lorente, G., & Señoráns, F. J. (2023). Biocatalysts Based on Immobilized Lipases for the Production of Ethyl Esters of Fatty Acids including Bioactive Gamma-Linolenic Acid from Borage Oil. Catalysts, 13(9), 1275. https://doi.org/10.3390/catal13091275