Exsolved Nanoparticles Decorated Double Perovskites as High-Performance Anodes for Direct-Ammonia Solid Oxide Fuel Cells
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis and Fabrication
3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seo, H.G.; Kim, D.H.; Seo, J.; Jeong, S.J.; Kim, J.; Tuller, H.L.; Son, J.W.; Jung, W. High-Performance and Durable Fuel Cells Using Co/Sr-Free Fluorite-Based Mixed Conducting (Pr,Ce)O2−δ Cathode. Adv. Energy Mater. 2022, 12, 2202101. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, E.; Chen, Y.; Liu, Y.; Zhang, L.; Zhang, W.; Luo, Z.; Kane, N.; Zhao, B.; Soule, L.; et al. An Active and Robust Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. ACS Energy Lett. 2021, 6, 1511–1520. [Google Scholar] [CrossRef]
- Teketel, B.S.; Beshiwork, B.A.; Tian, D.; Zhu, S.; Desta, H.G.; Kashif, K.; Chen, Y.; Lin, B. Promoted Performance of Layered Perovskite PrBaFe2O5+δ Cathode for Protonic Ceramic Fuel Cells by Zn Doping. Catalysts 2022, 12, 488. [Google Scholar] [CrossRef]
- Sun, M.; He, Q.; Kuang, X.; Zhang, Q.; Ye, S.; Huang, B. Probing Oxide-Ion Conduction in Low-Temperature SOFCs. Nano Energy 2018, 50, 88–96. [Google Scholar] [CrossRef]
- Sarner, S.; Schreiber, A.; Menzler, N.H.; Guillon, O. Recycling Strategies for Solid Oxide Cells. Adv. Energy Mater. 2022, 12, 2201805. [Google Scholar] [CrossRef]
- Sravani, B.; Reddy, Y.V.M.; Park, J.P.; Venu, M.; Sarma, L.S. Design of Bimetallic PtFe-Based Reduced Graphene Oxide as Efficient Catalyst for Oxidation Reduction Reaction. Catalysts 2022, 12, 1528. [Google Scholar] [CrossRef]
- Subotić, V.; Hochenauer, C. Analysis of Solid Oxide Fuel and Electrolysis Cells Operated in A Real-System Environment: State-of-the-Health Diagnostic, Failure Modes, Degradation Mitigation and Performance Regeneration. Prog. Energy Combust. Sci. 2022, 93, 101011. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Kane, N.; Luo, Z.; Pei, K.; Sasaki, K.; Choi, Y.; Chen, Y.; Ding, D.; Liu, M. An Efficient Bifunctional Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Adv. Funct. Mater. 2021, 31, 2105386. [Google Scholar] [CrossRef]
- Yi, Y.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Perovskite-Based Nanocomposites as High-Performance Air Electrodes for Protonic Ceramic Cells. Curr. Opin. Green Sustain. Chem. 2022, 38, 100711. [Google Scholar] [CrossRef]
- Dhongde, V.; Singh, A.; Kala, J.; Anjum, U.; Haider, M.A. Suddhasatwa Basu, Radio-Frequency Magnetron Sputtered Thin-Film La0.5Sr0.5Co0.95Nb0.05O3−δ Perovskite Electrodes for Intermediate Temperature Symmetric Solid Oxide Fuel Cell (IT-SSOFC). Mater. Rep. Energy 2022, 2, 100095. [Google Scholar]
- Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange Membrane Water Electrolyzers. Chem. Rev. 2022, 122, 11830–11895. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Liu, J.; Luo, W.; Fan, Y.; Zhang, J.; Luo, J.L.; Fu, X.Z. Unraveling the Enhanced Kinetics of Sr2Fe1+xMo1−xO6−δ Electrocatalysts for High-Performance Solid Oxide Cells. Adv. Energy Mater. 2021, 11, 2102845. [Google Scholar] [CrossRef]
- Pan, J.; Ye, Y.; Zhou, M.; Sun, X.; Ling, Y.; Yashiro, K.; Chen, Y. Improving the Activity and Stability of Ni-Based Electrodes for Solid Oxide Cells through Surface Engineering: Recent Progress and Future Perspectives. Mater. Rep. Energy 2021, 1, 100025. [Google Scholar] [CrossRef]
- Afif, A.; Radenahmad, N.; Cheok, Q.; Shams, S.; Kim, J.H.; Azad, A.K. Ammonia-Fed Fuel Cells: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 60, 822–835. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Y.; Wang, W.; Zhou, C.; Zhong, Y.; Yang, G.; Zhou, W.; Liu, M.; Shao, Z. Self-assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode. Joule 2019, 3, 2842–2853. [Google Scholar] [CrossRef]
- Wang, Q.; Ricote, S.; Wang, Y.; Hendriksen, P.V.; Wang, J.; Chen, M. Ba0.5Gd0.8La0.7Co2O6−δ Infiltrated BaZr0.8Y0.2O3−δ Composite Oxygen Electrodes for Protonic Ceramic Cells. J. Electrochem. Soc. 2022, 169, 014513. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Y.; Xu, M.; Wang, W.; Zhang, Y.; Yang, G.; Ran, R.; Zhou, W.; Shao, Z. A Cobalt-Free Multi-Phase Nanocomposite as Near-ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly. Adv. Mater. 2020, 32, 1906979. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, D.; Zhu, Y.; Liang, M.; Yang, M.; Yang, G.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Robust Bifunctional Phosphorus-Doped Perovskite Oxygen Electrode for Reversible Proton Ceramic Electrochemical Cells. Chem. Eng. J. 2022, 450, 137787. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Li, M.; Dong, J.; Chen, Z.; Huang, K.; Xiong, K.; Li, R.; Rao, M.; Chen, C.; Ling, Y.; Lin, B. Excessive Na-Doped La0.75Sr0.25Cr0.5Fe0.4Cu0.1O3−δ Perovskite as an Additional Internal Reforming Catalyst for Direct Carbon Dioxide-Ethanol Solid Oxide Fuel Cells. Catalysts 2022, 12, 1600. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, X.; Zhou, Y.; Luo, Z.; Nam, G.; Ding, Y.; Li, T.; Liu, Z.; Ahn, Y.; Kane, N.; et al. A Solid Oxide Fuel Cell Runs on Hydrocarbon Fuels with Exceptional Durability and Power Output. Adv. Energy Mater. 2022, 12, 2202928. [Google Scholar] [CrossRef]
- Song, Y.; Chen, J.; Yang, M.; Xu, M.; Liu, D.; Liang, M.; Wang, Y.; Ran, R.; Wang, W.; Ciucci, F.; et al. Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping Toward Improved Protonic Ceramic Fuel Cell Performance. Small 2022, 18, 2200450. [Google Scholar] [CrossRef] [PubMed]
- Zvonareva, I.; Fu, X.; Medvedev, D.; Shao, Z. Electrochemistry and Energy Conversion Features of Protonic Ceramic Cells with Mixed Ionic-Electronic Electrolytes. Energy Environ. Sci. 2022, 15, 439–465. [Google Scholar] [CrossRef]
- Cao, J.; Ji, Y.; Shao, Z. Perovskites for Protonic Ceramic Fuel Cells: A review. Energy Environ. Sci. 2022, 15, 2200–2232. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, S.; Yin, Y.; Bi, L. Taking Advantage of Li-Evaporation in LiCoO2 as Cathode for Proton-Conducting Solid Oxide Fuel Cells. J. Adv. Ceram. 2022, 11, 1849–1859. [Google Scholar] [CrossRef]
- Jo, M.; Bae, H.; Park, K.; Hamayun, M.A.; Park, G.; Kim, J.H.; Lee, K.T.; Lee, K.; Song, S.; Park, J. Layered Barium Cobaltite Structure Materials Containing Perovskite and CdI2-Based Layers for Reversible Solid Oxide Cells with Exceptionally High Performance. Chem. Eng. J. 2023, 451, 138954. [Google Scholar] [CrossRef]
- Park, K.; Bae, H.; Kim, H.K.; Choi, I.G.; Jo, M.; Park, G.M.; Asif, M.; Bhardwaj, A.; Lee, K.S.; Kim, Y.C.; et al. Understanding the Highly Electrocatalytic Active Mixed Triple Conducting NaxCa3−xCo4O9−δ Oxygen Electrode Materials. Adv. Energy Mater. 2023, 13, 2202999. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, Z.; Song, Y.; Yang, G.; Qian, W.; Yang, M.; Zhu, Y.; Ran, R.; Wang, W.; Zhou, W.; et al. High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Nano-Micro Lett. 2022, 14, 217. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Wang, X.; Xie, K. Sr2Fe1.5+xMo0.5O6−δ Cathode with Exsolved Fe Nanoparticles for Enhanced CO2 Electrolysis. Int. J. Hydrogen Energy 2020, 45, 11901–11907. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.; Gao, J.; Bian, L.; Hou, Y.; Wang, L.; Peng, J.; Bao, J.; Song, X.; An, S. Enhancing CO2 Catalytic Adsorption on an Fe Nanoparticle-Decorated LaSrFeO4+δ Cathode for CO2 Electrolysis. ACS Appl. Mater. Interfaces 2021, 13, 8229–8238. [Google Scholar] [CrossRef]
- Akimoto, W.; Fujimoto, T.; Saito, M.; Inaba, M.; Yoshida, H.; Inagaki, T. Ni-Fe/Sm-doped CeO2 Anode for Ammonia-Fueled Solid Oxide Fuel Cells. Solid State Ion. 2014, 256, 1–4. [Google Scholar] [CrossRef]
- Weissenberger, T.; Zapf, R.; Pennemann, H.; Kolb, G. Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas. Catalysts 2022, 12, 1186. [Google Scholar] [CrossRef]
- Li, H.; Song, Y.; Xu, M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Exsolved Alloy Nanoparticles Decorated Ruddlesden-Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. Energy Fuels 2020, 34, 11449–11457. [Google Scholar] [CrossRef]
- Miyazaki, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Development of Ni-Ba(Zr,Y)O3 Cermet Anodes for Direct Ammonia-Fueled Solid Oxide Fuel Cells. J. Power Sources 2017, 365, 148–154. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; Shao, J.; Zhang, Y.; You, H. Ammonia as an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells. Energy Convers. Manag. 2021, 228, 113729. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Pei, K.; Pan, Y.; Xu, K.; Ding, Y.; Zhao, B.; Sasaki, K.; Choi, Y.; Chen, Y.; et al. An Efficient and Durable Anode for Ammonia Protonic Ceramic Fuel Cells. Energy Environ. Sci. 2022, 15, 287. [Google Scholar] [CrossRef]
- Li, Y.; Pillai, H.S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q.; Karakalos, S.; Chen, M.; Yang, J.; et al. High-Performance Ammonia Oxidation Catalysts for Anion-Exchange Membrane Direct Ammonia Fuel Cells. Energy Environ. Sci. 2021, 14, 1449–1460. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, H.; Li, S.; Zhang, Y.; Chang, X.; Xia, Q.; Chen, N.; Gu, L.; Świerczek, K.; Li, Y.; et al. Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr2FeMo2/3Mg1/3O6−δ for Solid Oxide Fuel Cells. Adv. Energy Mater. 2018, 8, 1800062. [Google Scholar] [CrossRef]
- Jacobs, R.; Mayeshiba, T.; Booske, J.; Morgan, D. Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells. Adv. Energy Mater. 2018, 8, 1702708. [Google Scholar] [CrossRef]
- Shen, L.; Du, Z.; Zhang, Y.; Dong, X.; Zhao, H. Medium-Entropy Perovskites Sr(FeαTiβCoγMnζ)O3−δ as Promising Cathodes for Intermediate Temperature Solid Oxide Fuel Cell. Appl. Catal. B 2021, 295, 120264. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Guan, D.; Xu, M.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. Thermal-Expansion Offset for High-Performance Fuel Cell Cathodes. Nature 2021, 591, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Cavazzani, J.; Squizzato, E.; Brusamarello, E.; Glisenti, A. Exsolution in Ni-Doped Lanthanum Strontium Titanate: A Perovskite-Based Material for Anode Application in Ammonia-Fed Solid Oxide Fuel Cell. Int. J. Hydrogen Energy 2022, 47, 13921–13932. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Hua, B.; Behnamian, Y.; Li, J.; Cui, S.; Li, J.; Luo, J. Molybdenum Doped Pr0.5Ba0.5MnO3−δ (Mo-PBMO) Double Perovskite as a Potential Solid Oxide Fuel Cell Anode Material. J. Power Sources 2016, 301, 237–241. [Google Scholar] [CrossRef]
- Rathore, S.S.; Biswas, S.; Fini, D.; Kulkarni, A.P.; Giddey, S. Direct Ammonia Solid-Oxide Fuel Cells: A Review of Progress and Prospects. Int. J. Hydrogen Energy 2021, 46, 35365–35384. [Google Scholar] [CrossRef]
- Song, Y.; Li, H.; Xu, M.; Yang, G.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells. Small 2020, 16, 2001859. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, J.; Huang, X.; Zou, D.; Song, Y.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Slightly Ruthenium Doping Enables Better Alloy Nanoparticle Exsolution of Perovskite Anode for High-Performance Direct-Ammonia Solid Oxide Fuel Cells. J. Mater. Sci. Technol. 2022, 125, 51–58. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, H.; Yi, S.; Xia, Q.; Gong, Y.; Zhang, Y.; Cheng, X.; Li, Y.; Gu, L.; Świerczek, K. High-Performance Anode Material Sr2FeMo0.65Ni0.35O6−δ with in Situ Exsolved Nanoparticle Catalyst. ACS Nano 2016, 10, 8660–8669. [Google Scholar] [CrossRef]
- Huang, Y.H.; Dass, R.I.; Xing, Z.L.; Goodenough, J.B. Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells. Science 2006, 312, 254–257. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, L.; Sun, W.; Ren, R.; Yang, X.; Ma, M.; Qiao, J.; Wang, Z.; Zhen, S.; Sun, K. Co-Improving the Electrocatalytic Performance and H2S Tolerance of a Sr2Fe1.5Mo0.5O6−δ Based Anode for Solid Oxide Fuel Cells. J. Mater. Chem. A 2022, 10, 16280–16289. [Google Scholar] [CrossRef]
- Han, Z.; Dong, H.; Wu, Y.; Yang, Y. Locating the Rate-Limiting Step of Hydrogen Conversion on Sr2Fe1.5Mo0.5O6 (001) Surface: Implications for Efficient SOFC Anode Design. Appl. Surf. Sci. 2022, 595, 153513. [Google Scholar] [CrossRef]
- Osinkin, D.A.; Beresnev, S.M.; Bogdanovich, N.M. Influence of Pr6O11 on Oxygen Electroreduction Kinetics and Electrochemical Performance of Sr2Fe1.5Mo0.5O6−δ Based Cathode. J. Power Sources 2018, 392, 41–47. [Google Scholar] [CrossRef]
- Hou, S.; Alonso, J.A.; Goodenough, J.B. Co-Free, Iron Perovskites as Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells. J. Power Sources 2010, 195, 280–284. [Google Scholar] [CrossRef]
- Ge, X.; Chan, S.; Liu, Q.; Sun, Q. Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Adv. Energy Mater. 2012, 2, 1156–1181. [Google Scholar] [CrossRef]
- Aguadero, A.; Alonso, J.A.; Martínez-Coronado, R.; Martínez-Lope, M.J.; Fernández-Díaz, M.T. Evaluation of Sr2CoMoO6−δ as Anode Material in Solid-Oxide Fuel Cells: A Neutron Diffraction Study. J. Appl. Phys. 2011, 109, 034907. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhong, Y.; Xu, X.; Veder, J.M.; Rowles, M.R.; Saunders, M.; Ran, R.; Shao, Z. Activation-Free Supercapacitor Electrode Based on Surface-Modified Sr2CoMo1−xNixO6−δ Perovskite. Chem. Eng. J. 2020, 390, 124645. [Google Scholar] [CrossRef]
- McCarthy, G.J.; Clarence, E.G. Compound Formation in the System Sr Mo O. J. Inorg. Nucl. Chem. 1973, 35, 2669–2672. [Google Scholar] [CrossRef]
- Kouno, S.; Shirakawa, N.; Nagai, I.; Umeyama, N.; Tokiwa, K.; Watanabe, T. The Synthesis and Characterization of Double-Layered Perovskite Sr3Mo2O7. J. Phys. Soc. Jpn. 2007, 76, 094706. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, G.; Dai, Z.; Zhang, L.; Ma, Y.J. Photocatalytic and Luminescent Properties of SrMoO4 Phosphors Prepared via Hydrothermal Method with Different Stirring Speeds. J. Mater. Sci. Technol. 2017, 33, 23–29. [Google Scholar] [CrossRef]
- Zhu, T.; Troiani, H.E.; Mogni, L.V.; Han, M.; Barnett, S.A. Ni-Substituted Sr(Ti,Fe)O3 SOFC Anodes: Achieving High Performance Via Metal Alloy Nanoparticle Exsolution. Joule 2018, 2, 478–496. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Kesler, V.G.; Zaitsev, A.I.; Molokeev, M.S.; Aleksandrovsky, A.S.; Kuzubov, A.A.; Ignatova, N.Y. Electronic Structure of α-SrB4O7: Experiment and Theory. J. Phys. Condens. Matter 2013, 25, 085503. [Google Scholar] [CrossRef]
- Hengne, A.M.; Samal, A.K.; Enakonda, L.R.; Harb, M.; Gevers, L.E.; Anjum, D.H.; Hedhili, M.N.; Saih, Y.; Huang, K.; Basset, J. Ni-Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol. ACS Omega 2018, 3, 3688–3701. [Google Scholar] [CrossRef]
- Hashinokuchi, M.; Yokochi, R.; Akimoto, W.; Doi, T.; Inaba, M.; Kugai, J. Mechanism and Activity of Ni-Based (Ni-M: M = Fe, Mo, W, Ta) Cermet Anodes for Ammonia Oxidation in SOFCs. ECS Trans. 2015, 68, 2739–2744. [Google Scholar] [CrossRef]
- Zhong, F.; Wang, X.; Wang, L.; Fang, H.; Luo, Y.; Chen, C.; Lin, L.; Wang, D.; Chen, K.; Jiang, L. Tuning Geometry Distortion of Pyrochlore RE2Zr1.95Ni0.05O7+δ Anodes with Rich Oxygen Vacancies for Ammonia-Fed Solid Oxide Fuel Cell. Sep. Purif. Technol. 2023, 312, 123397. [Google Scholar] [CrossRef]
- Fournier, G.G.M.; Cumming, I.W.; Hellgardt, K. High Performance Direct Ammonia Solid Oxide Fuel Cell. J. Power Sources 2006, 162, 198–206. [Google Scholar] [CrossRef]
- Yang, J.; Molouk, A.F.S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguch, K. Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3−δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2015, 7, 7406–7412. [Google Scholar] [CrossRef]
- Kang, B.S.; Matsuda, J.; Ju, Y.W.; Kim, H.H.; Ishihara, T. Nano Strain Induced Double Columnar Oxide as Highly Active Oxygen-Dissociation Electrode for Ni-Fe Metal Supported Solid Oxide Fuel Cells. Nano Energy 2019, 56, 382–390. [Google Scholar] [CrossRef]
- Liu, K.; Lu, F.; Jia, X.; He, H.; Su, J.; Cai, B. A High Performance Thermal Expansion Offset Composite Cathode for IT-SOFCS. J. Mater. Chem. A 2022, 10, 24410–24421. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ Nanocomposite: A New High-Performance Cobalt-Free Triple-Conducting Cathode for Protonic Ceramic Fuel Cells Operating at Reduced Temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Chen, J.; Xu, M.; Yang, G.; Ran, R.; Zhou, W.; Wang, W.; Shao, Z. Exsolved Nanoparticles Decorated Double Perovskites as High-Performance Anodes for Direct-Ammonia Solid Oxide Fuel Cells. Catalysts 2023, 13, 996. https://doi.org/10.3390/catal13060996
Yi Y, Chen J, Xu M, Yang G, Ran R, Zhou W, Wang W, Shao Z. Exsolved Nanoparticles Decorated Double Perovskites as High-Performance Anodes for Direct-Ammonia Solid Oxide Fuel Cells. Catalysts. 2023; 13(6):996. https://doi.org/10.3390/catal13060996
Chicago/Turabian StyleYi, Yongning, Jiaming Chen, Meigui Xu, Guangming Yang, Ran Ran, Wei Zhou, Wei Wang, and Zongping Shao. 2023. "Exsolved Nanoparticles Decorated Double Perovskites as High-Performance Anodes for Direct-Ammonia Solid Oxide Fuel Cells" Catalysts 13, no. 6: 996. https://doi.org/10.3390/catal13060996
APA StyleYi, Y., Chen, J., Xu, M., Yang, G., Ran, R., Zhou, W., Wang, W., & Shao, Z. (2023). Exsolved Nanoparticles Decorated Double Perovskites as High-Performance Anodes for Direct-Ammonia Solid Oxide Fuel Cells. Catalysts, 13(6), 996. https://doi.org/10.3390/catal13060996