Microwave-Assisted Catalytic Conversion of 5-HMF for Biofuel Additives by Molybdophosphoric Acid Encapsulated KCC-1
Abstract
1. Introduction
2. Results and Discussions
2.1. Characterization Analysis
2.2. Catalytic Activity Study on HMF Etherification and Acylation with Ethanol
3. Experimental
3.1. Chemicals
3.2. Synthesis Procedure of MPA Encapsulated KCC-1
3.3. Characterizations
3.4. Activity and Product Analysis of Catalysts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.L.; Varbanov, P.; Klemeš, J. Minimising carbon footprint of regional biomass supply chains. Resour. Conserv. Recycl. 2010, 54, 303–309. [Google Scholar] [CrossRef]
- Nie, Y.; Li, J.; Wang, C.; Huang, G.; Fu, J.; Chang, S.; Li, H.; Ma, S.; Yu, L.; Cui, X.; et al. A fine-resolution estimation of the biomass resource potential across China from 2020 to 2100. Resour. Conserv. Recycl. 2022, 176, 105944. [Google Scholar] [CrossRef]
- Opia, A.C.; Hamid, M.K.B.A.; Syahrullail, S.; Rahim, A.B.A.; Johnson, C.A.N. Biomass as a potential source of sustainable fuel, chemical and tribological materials—Overview. Mater. Today Proc. 2021, 39, 922–928. [Google Scholar] [CrossRef]
- Mittal, A.; Pilath, H.M.; Johnson, D.K. Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) and Furfural. Energy Fuels 2020, 34, 3284–3293. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; West, R.M.; Dumesic, J.A. Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 79–100. [Google Scholar] [CrossRef]
- Tang, Z.-E.; Lim, S.; Pang, Y.-L.; Ong, H.-C.; Lee, K.-T. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renew. Sustain. Energy Rev. 2018, 92, 235–253. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, Y.; Fang, Z.; Kozinski, J.A.; Butler, I.S.; Xu, L.; Song, H.; Wei, X. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem. 2018, 20, 3657–3682. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49, 4273–4306. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, K.; Xu, H.; Zhu, L.; Wang, S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew. Sustain. Energy Rev. 2021, 139, 110706. [Google Scholar] [CrossRef]
- Alipour, S.; Omidvarborna, H.; Kim, D.-S. A review on synthesis of alkoxymethyl furfural, a biofuel candidate. Renew. Sustain. Energy Rev. 2017, 71, 908–926. [Google Scholar] [CrossRef]
- Fan, W.; Verrier, C.; Queneau, Y.; Popowycz, F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals. Curr. Org. Synth. 2019, 16, 583–614. [Google Scholar] [CrossRef]
- Arias, K.S.; Climent, M.J.; Corma, A.; Iborra, S. Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem 2014, 7, 210–220. [Google Scholar] [CrossRef]
- Sacia, E.R.; Balakrishnan, M.; Bell, A.T. Biomass conversion to diesel via the etherification of furanyl alcohols catalyzed by Amberlyst-15. J. Catal. 2014, 313, 70–79. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, S.; Wu, Y. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts. Front. Chem. 2020, 7, 948. [Google Scholar] [CrossRef]
- Lanzafame, P.; Temi, D.M.; Perathoner, S.; Centi, G.; Macario, A.; Aloise, A.; Giordano, G.J.C.T. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catal. Today 2011, 175, 435–441. [Google Scholar] [CrossRef]
- Allen, M.C.; Hoffman, A.J.; Liu, T.-w.; Webber, M.S.; Hibbitts, D.; Schwartz, T.J. Highly Selective Cross-Etherification of 5-Hydroxymethylfurfural with Ethanol. ACS Catal. 2020, 10, 6771–6785. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Nefedov, O.M.; Kustov, L.M. Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts 2018, 8, 368. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, X.; Huang, C.; Li, Y.; Chen, B. Facile, One-Pot, Two-Step, Strategy for the Production of Potential Bio-Diesel Candidates from Fructose. Catalysts 2017, 7, 237. [Google Scholar] [CrossRef]
- Ayashi, N.; Najafi Chermahini, A.; Saraji, M. Biomass conversion to alkyl levulinates using heteropoly acid carbon mesoporous composites. Process Saf. Environ. Prot. 2022, 160, 988–1000. [Google Scholar] [CrossRef]
- Afshari, M.; Varma, R.S.; Saghanezhad, S.J. Catalytic Applications of Heteropoly acid-Supported Nanomaterials in Synthetic Transformations and Environmental Remediation. Comments Inorg. Chem. 2022, 43, 129–176. [Google Scholar] [CrossRef]
- Boahene, P.E.; Vedachalam, S.; Dalai, A.K. Catalytic oxidative desulfurization of light gas oil over Keggin-type phosphomolybdic acid supported on TUD-1 metallosilicates. Fuel 2022, 317, 123447. [Google Scholar] [CrossRef]
- Chhabra, T.; Rohilla, J.; Krishnan, V. Nanoarchitectonics of phosphomolybdic acid supported on activated charcoal for selective conversion of furfuryl alcohol and levulinic acid to alkyl levulinates. Mol. Catal. 2022, 519, 112135. [Google Scholar] [CrossRef]
- Zhou, S.; He, J.; Wu, P.; He, L.; Tao, D.; Lu, L.; Yu, Z.; Zhu, L.; Chao, Y.; Zhu, W. Metal-organic framework encapsulated high-loaded phosphomolybdic acid: A highly stable catalyst for oxidative desulfurization of 4,6-dimethyldibenzothiophene. Fuel 2022, 309, 122143. [Google Scholar] [CrossRef]
- Winoto, H.P.; Fikri, Z.A.; Ha, J.-M.; Park, Y.-K.; Lee, H.; Suh, D.J.; Jae, J. Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone. Appl. Catal. B Environ. 2019, 241, 588–597. [Google Scholar] [CrossRef]
- Brahmkhatri, V.; Patel, A. Esterification of lauric acid with butanol-1 over H3PW12O40 supported on MCM-41. Fuel 2012, 102, 72–77. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Bakkali, B.E.; Trautwein, G.; Reinoso, S. Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Appl. Catal. B Environ. 2018, 224, 194–203. [Google Scholar] [CrossRef]
- Almeida, R.P.d.; Gomes Aciole, R.C.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Andrade Pacheco, J.G.; Lopes Barros, I.d.C. Residue-based activated carbon from passion fruit seed as support to H3PW12O40 for the esterification of oleic acid. J. Clean. Prod. 2021, 282, 124477. [Google Scholar] [CrossRef]
- Linares, N.; Silvestre-Albero, A.M.; Serrano, E.; Silvestre-Albero, J.; García-Martínez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 2014, 43, 7681–7717. [Google Scholar] [CrossRef]
- Cerón-Camacho, R.; Aburto, J.A.; Montiel, L.E.; Martínez-Palou, R. Microwave-assisted organic synthesis versus conventional heating. A comparative study for Fisher glycosidation of monosaccharides. Comptes Rendus Chim. 2013, 16, 427–432. [Google Scholar] [CrossRef]
- Remón, J.; Randall, J.; Budarin, V.L.; Clark, J.H. Production of bio-fuels and chemicals by microwave-assisted, catalytic, hydrothermal liquefaction (MAC-HTL) of a mixture of pine and spruce biomass. Green Chem. 2019, 21, 284–299. [Google Scholar] [CrossRef]
- Vasudevan, S.V.; Kong, X.; Cao, M.; Wang, M.; Mao, H.; Bu, Q. Microwave-assisted liquefaction of carbohydrates for 5-hydroxymethylfurfural using tungstophosphoric acid encapsulated dendritic fibrous mesoporous silica as a catalyst. Sci. Total Environ. 2021, 760, 143379. [Google Scholar] [CrossRef]
- Sudhakar, P.; Pandurangan, A. Heteropolyacid (H3PW12O40)-impregnated mesoporous KIT-6 catalyst for green synthesis of bio-diesel using transesterification of non-edible neem oil. Mater. Renew. Sustain. Energy 2019, 8, 22. [Google Scholar] [CrossRef]
- Ishikawa, S.; Ikeda, T.; Koutani, M.; Yasumura, S.; Amakawa, K.; Shimoda, K.; Jing, Y.; Toyao, T.; Sadakane, M.; Shimizu, K.-I.; et al. Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. J. Am. Chem. Soc. 2022, 144, 7693–7708. [Google Scholar] [CrossRef]
- Vilanculo, C.B.; da Silva, M.J.; Rodrigues, A.A.; Ferreira, S.O.; da Silva, R.C. Vanadium-doped sodium phosphomolybdate salts as catalysts in the terpene alcohols oxidation with hydrogen peroxide. RSC Adv. 2021, 11, 24072–24085. [Google Scholar] [CrossRef]
- Huang, X.; Tao, Z.; Praskavich, J.C.; Goswami, A.; Al-Sharab, J.F.; Minko, T.; Polshettiwar, V.; Asefa, T. Dendritic Silica Nanomaterials (KCC-1) with Fibrous Pore Structure Possess High DNA Adsorption Capacity and Effectively Deliver Genes In Vitro. Langmuir 2014, 30, 10886–10898. [Google Scholar] [CrossRef]
- Tonutti, L.G.; Dalla Costa, B.O.; Mendow, G.; Pestana, G.L.; Veizaga, N.S.; Grau, J.M. Etherification of hydroxymethylfurfural with ethanol on mesoporous silica catalysts of regulated acidity to obtain ethoxymethylfurfural, a bio-additive for diesel. Microporous Mesoporous Mater. 2022, 343, 112145. [Google Scholar] [CrossRef]
- Guo, H.; Dowaki, T.; Shen, F.; Qi, X.; Smith, R.L. Critical Assessment of Reaction Pathways for Next-Generation Biofuels from Renewable Resources: 5-Ethoxymethylfurfural. ACS Sustain. Chem. Eng. 2022, 10, 9002–9021. [Google Scholar] [CrossRef]











| Catalyst | SBET a (m²/g) | Vtp b (cm3/g) | dP, BJH c (nm) | Total Acidity d mmol NH3/g |
|---|---|---|---|---|
| KCC-1 | 523 | 1.63 | 13 | 0.022 |
| MPA-KCC-1 | 320 | 0.65 | 14 | 0.251 |
| IMPA-KCC-1 | 380 | 1.20 | 13 | 0.385 |
| No. of Cycles | 5-HMF Conversion (%) a | Selectivity b(%) | ||
|---|---|---|---|---|
| HMFDEA | EMFDEA | EL | ||
| 1 | 82 | 13 | 82 | 5 |
| 2 | 80 | 12 | 84 | 4 |
| 3 | 79 | 10 | 83 | 7 |
| 4 | 73 | 14 | 81 | 3 |
| 5 | 75 | 12 | 82 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasudevan, S.V.; Cai, J.; Xu, J.; Lin, H.; Wang, H.; Bu, Q. Microwave-Assisted Catalytic Conversion of 5-HMF for Biofuel Additives by Molybdophosphoric Acid Encapsulated KCC-1. Catalysts 2023, 13, 969. https://doi.org/10.3390/catal13060969
Vasudevan SV, Cai J, Xu J, Lin H, Wang H, Bu Q. Microwave-Assisted Catalytic Conversion of 5-HMF for Biofuel Additives by Molybdophosphoric Acid Encapsulated KCC-1. Catalysts. 2023; 13(6):969. https://doi.org/10.3390/catal13060969
Chicago/Turabian StyleVasudevan, Srinivasan Vinju, Jin Cai, Junming Xu, Hongjian Lin, Hongliang Wang, and Quan Bu. 2023. "Microwave-Assisted Catalytic Conversion of 5-HMF for Biofuel Additives by Molybdophosphoric Acid Encapsulated KCC-1" Catalysts 13, no. 6: 969. https://doi.org/10.3390/catal13060969
APA StyleVasudevan, S. V., Cai, J., Xu, J., Lin, H., Wang, H., & Bu, Q. (2023). Microwave-Assisted Catalytic Conversion of 5-HMF for Biofuel Additives by Molybdophosphoric Acid Encapsulated KCC-1. Catalysts, 13(6), 969. https://doi.org/10.3390/catal13060969

