An Assessment of Zeolite Framework Effect for Low-Temperature NOX Adsorbers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Characterization
2.1.1. Structural and Morphological Characterization
2.1.2. FT-IR Characterization
2.2. NOx Uptake and Desorption Experiments
2.2.1. NO/O2 Adsorption Phase
2.2.2. NOx Desorption Phase
3. Materials and Methods
3.1. Sample Preparation
3.2. Sample Characterization
3.3. Gas phase Analysis during NO/O2 Adsorption at Low Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Körfer, T. Potential of Advanced, Combined Aftertreatment Systems for Light-Duty Diesel Engines to Meet Upcoming EU and US Emission Regulation; SAE Technical Paper 2013-24-0163; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Roy, S.; Baiker, A. NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance. Chem. Rev. 2009, 109, 4054–4091. [Google Scholar] [CrossRef]
- Epling, W.S.; Campbell, L.E.; Yezerets, A.; Currier, N.W.; II, J.E.P. Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts. Catal. Rev. 2004, 46, 163–245. [Google Scholar] [CrossRef]
- Olsson, L.; Wijayanti, K.; Leistner, K.; Kumar, A.; Joshi, S.Y.; Kamasamudram, K.; Currier, N.W.; Yezerets, A. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR. Appl. Catal. B Environ. 2016, 183, 394–406. [Google Scholar] [CrossRef]
- Theis, J.R.; Lambert, C.K. An assessment of low temperature NOx adsorbers for cold-start NOx control on diesel engines. Catal. Today 2015, 258, 367–377. [Google Scholar] [CrossRef]
- Gao, Z.; Kim, M.-Y.; Choi, J.-S.; Daw, C.S.; Parks, J.E.; Smith, D.E. Cold-start emissions control in hybrid vehicles equipped with a passive adsorber for hydrocarbons and nitrogen oxides. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226, 1396–1407. [Google Scholar] [CrossRef]
- Tamm, S.; Andonova, S.; Olsson, L. Silver as Storage Compound for NOx at Low Temperatures. Catal. Lett. 2014, 144, 674–684. [Google Scholar] [CrossRef]
- Jones, S.; Ji, Y.; Crocker, M. Ceria-Based Catalysts for Low Temperature NOx Storage and Release. Catal. Lett. 2016, 146, 909–917. [Google Scholar] [CrossRef]
- Gu, Y.; Epling, W.S. Passive NOx adsorber: An overview of catalyst performance and reaction chemistry. Appl. Catal. A Gen. 2019, 570, 1–14. [Google Scholar] [CrossRef]
- Lee, J.; Theis, J.R.; Kyriakidou, E.A. Vehicle emissions trapping materials: Successes, challenges, and the path forward. Appl. Catal. B Environ. 2019, 243, 397–414. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Collier, J.E.; Liu, D.; Mantarosie, L.; Durán-Martín, D.; Novák, V.; Rajaram, R.R.; Thompsett, D. Low Temperature NO Storage of Zeolite Supported Pd for Low Temperature Diesel Engine Emission Control. Catal. Lett. 2016, 146, 1706–1711. [Google Scholar] [CrossRef]
- Murata, U.; Morita, T.; Wada, K.; Ohno, H. NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control. SAE Int. J. Fuels Lubr. 2015, 8, 454–459. [Google Scholar] [CrossRef]
- Zheng, Y.; Kovarik, L.; Engelhard, M.H.; Wang, Y.L.; Wang, Y.; Gao, F.; Szanyi, J. Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry. J. Phys. Chem. C 2017, 121, 15793–15803. [Google Scholar] [CrossRef]
- Ryou, Y.; Lee, J.; Lee, H.; Kim, C.H.; Kim, D.H. Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application. Catal. Today 2018, 307, 93–101. [Google Scholar] [CrossRef]
- Lee, J.; Ryou, Y.; Cho, S.J.; Lee, H.; Kim, C.H.; Kim, D.H. Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Appl. Catal. B Environ. 2018, 226, 71–82. [Google Scholar] [CrossRef]
- Lee, J.; Ryou, Y.; Hwang, S.; Kim, Y.; Cho, S.J.; Lee, H.; Kim, C.H.; Kim, D.H. Comparative study of the mobility of Pd species in SSZ-13 and ZSM-5, and its implication for their activity as passive NOx adsorbers (PNAs) after hydro-thermal aging. Catal. Sci. Technol. 2019, 9, 163–173. [Google Scholar] [CrossRef]
- Pace, R.B.; Lardinois, T.M.; Ji, Y.; Gounder, R.; Heintz, O.; Crocker, M. Effects of Treatment Conditions on Pd Speciation in CHA and Beta Zeolites for Passive NOx Adsorption. ACS Omega 2021, 6, 29471–29482. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Liu, Z.; Shan, Y.; Shi, W.; Yu, Y.; He, H. The study of Pd-SSZ-13 as low-temperature passive NO adsorber materials: High dispersal of Pd in small-pore CHA zeolites by thermal treatment. Appl. Catal. B Environ. 2023, 324, 122254. [Google Scholar] [CrossRef]
- Theis, J.R.; Ura, J.; Getsoian, A.B.; Prikhodko, V.Y.; Thomas, C.R.; Pihl, J.A.; Lardinois, T.M.; Gounder, R.; Wei, X.; Ji, Y.; et al. Effect of framework Al pairing on NO storage properties of Pd-CHA passive NOx adsorbers. Appl. Catal. B Environ. 2023, 322, 122074. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Xu, X.; Wang, X.; Kang, R.; Fu, M.; Guo, Y.; Chen, P.; Li, Y.; Ye, D. Cold-Start NO(x) Mitigation by Passive Adsorption Using Pd-Exchanged Zeolites: From Material Design to Mechanism Understanding and System Integration. Environ. Sci. Technol. 2023, 57, 3467–3485. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Q.; Shan, Y.; Shi, X.; Liu, Z.; He, H. Effects of Si/Al Ratio on Passive NOx Adsorption Performance over Pd/Beta Zeolites. Molecules 2023, 28, 3501. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Matarrese, R.; Castoldi, L.; Morandi, S.; Ticali, P.; Valsania, M.C.; Lietti, L. NO adsorption/desorption pathways over Pd/SSZ-13 low temperature NOx adsorbers investigated by operando FT-IR spectroscopy and microreactor study. Appl. Catal. B 2023, 331, 122723. [Google Scholar] [CrossRef]
- Khivantsev, K.; Jaegers, N.R.; Koleva, I.Z.; Aleksandrov, H.A.; Kovarik, L.; Engelhard, M.; Gao, F.; Wang, Y.; Vayssilov, G.N.; Szanyi, J. Stabilization of Super Electrophilic Pd+2 Cations in Small-Pore SSZ-13 Zeolite. J. Phys. Chem. C 2020, 124, 309–321. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I.; Vayssilov, G.N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 2002, 47, 307–511. [Google Scholar]
- Aylor, A.W.; Lobree, L.J.; Reimer, J.A.; Bell, A.T. Investigations of the Dispersion of Pd in H-ZSM-5. J. Catal. 1997, 172, 453–462. [Google Scholar] [CrossRef]
- Onida, B.; Geobaldo, F.; Testa, F.; Crea, F.; Garrone, E. FTIR investigation of the interaction at 77 K of diatomic molecular probes on MCM-22 zeolite. Micropor. Mesopor. Mat. 1999, 30, 119–127. [Google Scholar] [CrossRef]
- Khivantsev, K.; Jaegers, N.R.; Kovarik, L.; Hanson, J.C.; Tao, F.F.; Tang, Y.; Zhang, X.; Koleva, I.Z.; Aleksandrov, H.A.; Vayssilov, G.N.; et al. Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small-Pore Zeolite SSZ-13: High-Capacity and High-Efficiency Low-Temperature CO and Passive NOx Adsorbers. Angew. Chem. Int. Ed. Engl. 2018, 57, 16672–16677. [Google Scholar] [CrossRef]
- Mandal, K.; Gu, Y.; Westendorff, K.S.; Li, S.; Pihl, J.A.; Grabow, L.C.; Epling, W.S.; Paolucci, C. Condition-Dependent Pd Speciation and NO Adsorption in Pd/Zeolites. ACS Catal. 2020, 10, 12801–12818. [Google Scholar] [CrossRef]
- Khivantsev, K.; Gao, F.; Kovarik, L.; Wang, Y.; Szanyi, J. Molecular Level Understanding of How Oxygen and Carbon Monoxide Improve NOx Storage in Palladium/SSZ-13 Passive NOx Adsorbers: The Role of NO+ and Pd(II)(CO)(NO) Species. J. Phys. Chem. C 2018, 122, 10820–10827. [Google Scholar] [CrossRef]
- Chakarova, K.; Ivanova, E.; Hadjiivanov, K.; Klissurski, D.; Knözinger, H. Co-ordination chemistry of palladium cations in Pd-H-ZSM-5 as revealed by FTIR spectra of adsorbed and co-adsorbed probe molecules (CO and NO). Phys. Chem. Chem. Phys. 2004, 006, 3702–3709. [Google Scholar] [CrossRef]
- Kim, P.; Van der Mynsbrugge, J.; Aljama, H.; Lardinois, T.M.; Gounder, R.; Head-Gordon, M.; Bell, A.T. Investigation of the Modes of NO Adsorption in Pd/H-CHA. Appl. Catal. B Environ. 2022, 304, 120992. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of Neutral and Charged NxOy Surface Species by IR Spectroscopy. Catal. Rev. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Hadjiivanov, K.; Saussey, J.; Freysz, J.L.; Lavalley, J.C. FT-IR study of NO+O2 co-adsorption on H-ZSM-5: Re-assignment of the 2133 cm−1 band to NO+ species. Catal. Lett. 1998, 52, 103–108. [Google Scholar] [CrossRef]
- Vos, A.M.; Mignon, P.; Geerlings, P.; Thibault-Starzyk, F.; Schoonheydt, R.A. Probing the basicity of zeolite frameworks with N2O4: A DFT approach. Micropor. Mesopor. Mat. 2006, 90, 370–376. [Google Scholar] [CrossRef]
- Szanyi, J.; Hun Kwak, J.; Moline, R.A.; Peden, C.H.F. The adsorption of NO2 and the NO + O2 reaction on Na-Y, FAU: An in situ FTIR investigation. Phys. Chem. Chem. Phys. 2003, 5, 4045–4051. [Google Scholar] [CrossRef]
- Perdana, I.; Creaser, D.; Öhrman, O.; Hedlund, J. A comparison of NOx adsorption on Na, H and BaZSM-5 films. Appl. Catal. B Environ. 2007, 72, 82–91. [Google Scholar] [CrossRef]
- Khivantsev, K.; Jaegers, N.R.; Kovarik, L.; Prodinger, S.; Derewinski, M.A.; Wang, Y.; Gao, F.; Szanyi, J. Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Appl. Catal. A Gen. 2019, 569, 141–148. [Google Scholar] [CrossRef]
- Gupta, A.; Kang, S.B.; Harold, M.P. NOx uptake and release on Pd/SSZ-13: Impact of feed composition and temperature. Catal. Today 2021, 360, 411–425. [Google Scholar] [CrossRef]
- Villamaina, R.; Iacobone, U.; Nova, I.; Tronconi, E.; Ruggeri, M.P.; Mantarosie, L.; Collier, J.; Thompsett, D. Mechanistic insight in NO trapping on Pd/Chabazite systems for the low-temperature NOx removal from Diesel exhausts. Appl. Catal. B Environ. 2021, 284, 119724. [Google Scholar] [CrossRef]
- Mei, D.; Gao, F.; Szanyi, J.; Wang, Y. Mechanistic insight into the passive NOx adsorption in the highly dispersed Pd/HBEA zeolite. Appl. Catal. A Gen. 2019, 569, 181–189. [Google Scholar] [CrossRef]
- Castoldi, L.; Matarrese, R.; Morandi, S.; Ticali, P.; Lietti, L. Low-temperature Pd/FER NOx adsorbers: Operando FT-IR spectroscopy and performance analysis. Catal. Today 2021, 360, 317–325. [Google Scholar] [CrossRef]
Sample | Framework Structures and Pore System | Pore Sizes (Å) | Si/Al Ratio a | Pd Loading (%) a | BET (m2/g) | Vp (cm3/g) |
---|---|---|---|---|---|---|
Y | FAU; 3D; 12-ring channels | 7.4 | 30 | // | 616 | 0.27 |
Pd/Y | 1.07 | 612 | 0.27 | |||
ZSM-5 | MFI; 2D; 10-ring channels | 5.4–5.6 | 40 | // | 407 | 0.10 |
Pd/ZSM-5 | 1.07 | 390 | 0.12 | |||
FER | FER; 2D; 10 and 8-ring channels | 4.3–5.5 | 11 | // | 302 | 0.13 |
Pd/FER | 1.1 | 312 | 0.10 | |||
SSZ-13 | CHA; 3D; 8-ring channels | 3.6–3.7 | 10 | // | 558 | 0.09 |
Pd/SSZ-13 | 1.14 b | 578 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castoldi, L.; Morandi, S.; Ticali, P.; Matarrese, R.; Lietti, L. An Assessment of Zeolite Framework Effect for Low-Temperature NOX Adsorbers. Catalysts 2023, 13, 962. https://doi.org/10.3390/catal13060962
Castoldi L, Morandi S, Ticali P, Matarrese R, Lietti L. An Assessment of Zeolite Framework Effect for Low-Temperature NOX Adsorbers. Catalysts. 2023; 13(6):962. https://doi.org/10.3390/catal13060962
Chicago/Turabian StyleCastoldi, Lidia, Sara Morandi, Pierfrancesco Ticali, Roberto Matarrese, and Luca Lietti. 2023. "An Assessment of Zeolite Framework Effect for Low-Temperature NOX Adsorbers" Catalysts 13, no. 6: 962. https://doi.org/10.3390/catal13060962