V6O13 Micro-Flower Arrays Grown In Situ on Ni Foam as Efficient Electrocatalysts for Hydrogen Evolution at Large Current Densities
Abstract
1. Introduction
2. Results
2.1. Structural and Morphological Characterizations
2.2. Electrocatalytic HER Performance of the as-Synthesized Catalysts
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of V6O13/NF
3.3. Synthesis of VOx/NF
3.4. Synthesis of Sample-0.2 g, Sample-0.5 g and Sample-1.0 g
3.5. General Characterizations
3.6. Electrochemical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Yan, M. Graphene nanoarchitectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhong, X.; Chen, J.; Zhang, Y.; Liu, J.; Zhang, B. Optimizing the electronic structure of Fe-doped Co3O4 supported Ru catalyst via metal-support interaction boosting oxygen evolution reaction and hydrogen evolution reaction. Chin. Chem. Lett. 2022, 108085. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhang, Z.; Wang, L.; Xiao, B. Dopant-vacancy activated tetragonal transition metal selenide for hydrogen evolution electrocatalysis. Chin. Chem. Lett. 2023, 34, 108046. [Google Scholar] [CrossRef]
- Sreekanth, T.; Tamilselvan, M.; Yoo, K.; Kim, J. Microwave-assisted in situ growth of VO2 nanoribbons on Ni foam as inexpensive bifunctional electrocatalysts for the methanol oxidation and oxygen evolution reactions. Appl. Surf. Sci. 2022, 570, 151119. [Google Scholar] [CrossRef]
- He, J.; Liu, F.; Chen, Y.; Liu, X.; Zhang, X.; Zhao, L.; Chang, B.; Wang, J.; Liu, H.; Zhou, W. Cathode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134331. [Google Scholar] [CrossRef]
- He, D.; Cao, L.; Feng, L.; Li, S.; Feng, Y.; Li, G.; Zhang, Y.; Li, J.; Huang, J. Dual modulation of morphology and electronic structures of VN@C electrocatalyst by W doping for boosting hydrogen evolution reaction. Chin. Chem. Lett. 2022, 33, 4781–4785. [Google Scholar] [CrossRef]
- Yang, J.; Shin, H. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. J. Mater. Chem. A 2014, 2, 5979–5985. [Google Scholar] [CrossRef]
- Chang, B.; Deng, L.; Wang, S.; Shi, D.; Ai, Z.; Jiang, H.; Shao, Y.; Zhang, L.; Shen, J.; Wu, Y.; et al. A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media. J. Mater. Chem. A 2022, 8, 91–96. [Google Scholar] [CrossRef]
- Xie, J.; Li, S.; Zhang, X.; Zhang, J.; Wang, R.; Zhang, H.; Pan, B.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615–4620. [Google Scholar] [CrossRef]
- Berenguer, R.; Guerrero-P’erez, M.O.; Guzm’an, I.; Rodríguez-Mirasol, J.; Cordero, T. Synthesis of vanadium oxide nanofibers with variable crystallinity and V5+/V4+ ratios. ACS Omega 2017, 2, 7739–7745. [Google Scholar] [CrossRef]
- Zheng, X.; Qin, M.; Ma, S.; Chen, Y.; Ning, H.; Yang, R.; Mao, S.; Wang, Y. Strong Oxide-Support Interaction over IrO2/V2O5 for Efficient pH-Universal Water Splitting. Adv. Sci. 2022, 9, 2104636. [Google Scholar] [CrossRef] [PubMed]
- Dey, K.; Jha, S.; Kumar, A.; Gupta, G.; Srivastava, A.; Ingole, P. Layered vanadium oxide nanofibers as impressive electrocatalyst for hydrogen evolution reaction in acidic medium. Electrochim. Acta 2019, 312, 89–99. [Google Scholar] [CrossRef]
- Khan, Z.; Senthilkumar, B.; Park, S.; Yang, J.; Lee, J.; Song, H.; Kim, Y.; Kwak, S.; Ko, H. Carambola Shaped VO2 Nanostructures: A Binder–Free Air Electrode for Aqueous Na–Air Battery. J. Mater. Chem. A 2017, 5, 2037–2044. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Liu, M.; Xu, Q.; Jiang, H.; Li, C. Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chem. Eng. Sci. 2020, 227, 115915. [Google Scholar] [CrossRef]
- Choi, Y.-H. VO2 as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. Nanomaterials 2022, 16, 939. [Google Scholar]
- Ding, Y.; Wen, Y.; Wu, C.; Aken, P.; Maier, J.; Yu, Y. 3D V6O13 Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries. Nano Lett. 2015, 15, 1388–1394. [Google Scholar] [CrossRef]
- Rao, Y.; Chen, S.; Yue, Q.; Zhang, Y.; Kang, Y. V2O3/MnS Arrays as Bifunctional Air Electrode for Long-Lasting and Flexible Rechargeable Zn-Air Batteries. Small 2022, 18, 2104411. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, T.; Wang, H.; Guo, X.; Liu, C.; Pang, H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chem. Eng. J. 2021, 417, 128408. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, C.; Song, J.; Engelhard, M.; Du, D.; Lin, Y. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries. Electroanalysis 2017, 29, 1469–1473. [Google Scholar] [CrossRef]
- Fan, K.; Zou, H.; Duan, L.; Sun, L. Selectively Etching Vanadium Oxide to Modulate Surface Vacancies of Unary Metal–Based Electrocatalysts for High-Performance Water Oxidation. Adv. Energy Mater. 2020, 10, 1903571. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, R.; Du, D.; Ren, L.; Li, R.; Wen, X.; Zhao, C.; Zeng, T.; Zhou, B.; Shu, C. Cationic vanadium vacancy-enriched V2−xO5 on V2C MXene as superior bifunctional electrocatalysts for Li-O2 batteries. Sci. China Mater. 2022, 65, 1761–1770. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 5277–5281. [Google Scholar] [CrossRef] [PubMed]
- Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P.; Schmidt, T.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317–6322. [Google Scholar] [CrossRef]
- Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477. [Google Scholar] [CrossRef] [PubMed][Green Version]
- He, D.; Cao, L.; Huang, J.; Kajiyoshi, K.; Wu, J.; Wang, C.; Liu, Q.; Yang, D.; Feng, L. In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction. J. Energy Chem. 2020, 47, 263–271. [Google Scholar] [CrossRef]
- Xue, Z.; Su, H.; Yu, Q.; Zhang, B.; Wang, H.; Li, X.; Chen, J. Janus Co/CoP nanoparticles as efficient motte-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy. Mater. 2017, 7, 1602355. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 2016, 55, 6702–6707. [Google Scholar] [CrossRef][Green Version]
- Wang, Q.; Zhao, Z.; Dong, S.; He, D.; Lawrence, M.; Han, S.; Cai, C.; Xiang, S.; Rodriguez, P.; Xiang, B.; et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467. [Google Scholar] [CrossRef]
- Rao, Y.; Zhang, L.; Shang, X.; Dong, B.; Liu, Y.; Lu, S.; Chi, J.; Chai, Y.; Liu, C. Vanadium sulfides interwoven nanoflowers based on in-situ sulfurization of vanadium oxides octahedron on nickel foam for efficient hydrogen evolution. Appl. Surf. Sci. 2017, 423, 1090–1096. [Google Scholar] [CrossRef]
- Chalotra, S.; Mir, R.; Kaur, G.; Pandey, O. Oxygen deficient V2O3: A stable and efficient electrocatalyst for HER and high performance EDLCs. Ceram. Int. 2020, 46, 17954–17962. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, W.; Ding, D.; Zou, Y.; Cui, Y.; Xu, L.; Jiang, J. Accelerating Hydrogen Evolution at Neutral pH by Destabilization Water with Conducting Oxophilic Metal Oxide. J. Mater. Chem. A 2020, 8, 12169–12176. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, X.; Gao, Y.; Cui, Z.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Huang, B. Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. Electrochim. Acta 2019, 320, 134535. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, H.; Weng, W.; Gu, G.; Xiao, W. Interfacial confinement of Ni-V2O3 in molten salts for enhanced electrocatalytic hydrogen evolution. J. Energy Chem. 2020, 50, 280–285. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, H.; Yu, Z.; Islam, S.; He, H.; Yuan, M.; Yue, Y.; Xu, K.; Hao, W.; Sun, G.; et al. Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. J. Am. Chem. Soc. 2019, 141, 10417–10430. [Google Scholar] [CrossRef] [PubMed]
- Kou, T.; Smart, T.; Yao, B.; Chen, I.; Thota, D.; Ping, Y.; Li, Y. Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium. Adv. Energy Mater. 2018, 8, 703538. [Google Scholar]
- Niu, Y.; Li, W.; Wu, X.; Feng, B.; Yu, Y.; Hu, W.; Li, C. Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation. J. Mater. Chem. A 2019, 7, 10534–10542. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Huang, J.; Wang, Y.; Cao, L.; Zhao, Y.; Kajiyoshi, K.; Liu, Y.; Feng, L. V6O13 Micro-Flower Arrays Grown In Situ on Ni Foam as Efficient Electrocatalysts for Hydrogen Evolution at Large Current Densities. Catalysts 2023, 13, 914. https://doi.org/10.3390/catal13050914
Xie Y, Huang J, Wang Y, Cao L, Zhao Y, Kajiyoshi K, Liu Y, Feng L. V6O13 Micro-Flower Arrays Grown In Situ on Ni Foam as Efficient Electrocatalysts for Hydrogen Evolution at Large Current Densities. Catalysts. 2023; 13(5):914. https://doi.org/10.3390/catal13050914
Chicago/Turabian StyleXie, Yajie, Jianfeng Huang, Yufei Wang, Liyun Cao, Yong Zhao, Koji Kajiyoshi, Yijun Liu, and Liangliang Feng. 2023. "V6O13 Micro-Flower Arrays Grown In Situ on Ni Foam as Efficient Electrocatalysts for Hydrogen Evolution at Large Current Densities" Catalysts 13, no. 5: 914. https://doi.org/10.3390/catal13050914
APA StyleXie, Y., Huang, J., Wang, Y., Cao, L., Zhao, Y., Kajiyoshi, K., Liu, Y., & Feng, L. (2023). V6O13 Micro-Flower Arrays Grown In Situ on Ni Foam as Efficient Electrocatalysts for Hydrogen Evolution at Large Current Densities. Catalysts, 13(5), 914. https://doi.org/10.3390/catal13050914