The Effect of Support on Catalytic Performance of Ni-Doped Mo Carbide Catalysts in 2-Methylfuran Production
Abstract
:1. Introduction
2. Results
2.1. Hydrogenation of Furfural on Supported Ni0.1MoC-Based Catalysts in a Batch Reactor
2.2. Characterization of Ni0.1MoC-Based Catalysts
2.3. Hydrogenation of Furfuryl Alcohol and Furfural on Ni0.1MoC/C Catalyst in a Flow Reactor
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalytic Activity Tests
3.3. Products Analysis
3.4. X-ray Diffraction
3.5. X-ray Photoelectron Spectroscopy
3.6. X-ray Absorption Spectroscopy
3.7. Elemental Analysis
3.8. Transmission Electron Microscopy
3.9. Texture Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeletsky, P.M.; Kukushkin, R.G.; Alekseeva, M.V.; Smirnov, A.A. CHAPTER 6: Application of Heterogeneous Catalysts for the Conversion of Biomass-Derived Feedstocks into Fuel Components and Eco-Additives. Heterog. Catal. Energy Appl. 2020, 6, 150–179. [Google Scholar] [CrossRef]
- Hoydonckx, H.E.; Van Rhijn, W.M.; Van Rhijn, W.; De Vos, D.E.; Jacobs, P.A. Furfural and Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA.: Hoboken, NJ, USA, 2007; eISBN 9783527306732. [Google Scholar] [CrossRef]
- Thewes, M.; Muether, M.; Pischinger, S.; Budde, M.; Brunn, A.; Sehr, A.; Adomeit, P.; Klankermayer, J. Analysis of the Impact of 2-Methylfuran on Mixture Formation and Combustion in a Direct-Injection Spark-Ignition Engine. Energy Fuels 2011, 25, 5549–5561. [Google Scholar] [CrossRef]
- Lange, J.-P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural-A Promising Platform for Lignocellulosic Biofuels. Chemsuschem 2012, 5, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; De, S.; Saha, B.; Alam, I. Advances in Conversion of Hemicellulosic Biomass to Furfural and Upgrading to Biofuels. Catal. Sci. Technol. 2012, 2, 2025–2036. [Google Scholar] [CrossRef]
- Gürbüz, E.I.; Gallo, J.M.R.; Alonso, D.M.; Wettstein, S.G.; Lim, W.Y.; Dumesic, J.A. Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone. Angew. Chem. Int. Ed. 2013, 52, 1270–1274. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pham, V.V. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev. 2021, 148, 111265. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Rodríguez-Padrón, D.; Len, C. Recent Advances in Catalytic Hydrogenation of Furfural. Catalysts 2019, 9, 796. [Google Scholar] [CrossRef]
- Burnett, L.W.; Johns, I.B.; Holdren, R.F.; Hixon, R.M. Production of 2-Methylfuran by Vapor-Phase Hydrogenation of Furfural. Ind. Eng. Chem. 1948, 40, 502–505. [Google Scholar] [CrossRef]
- Nguyen-Huy, C.; Kim, J.S.; Yoon, S.; Yang, E.; Kwak, J.H.; Lee, M.S.; An, K. Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation. Fuel 2018, 226, 607–617. [Google Scholar] [CrossRef]
- Mäkelä, E.; Lahti, R.; Jaatinen, S.; Romar, H.; Hu, T.; Puurunen, R.L.; Lassi, U.; Karinen, R. Study of Ni, Pt, and Ru Catalysts on Wood-based Activated Carbon Supports and their Activity in Furfural Conversion to 2-Methylfuran. ChemCatChem 2018, 10, 3269–3283. [Google Scholar] [CrossRef]
- Jaatinen, S.K.; Karinen, R.; Lehtonen, J.S. Liquid Phase Furfural Hydrotreatment to 2-Methylfuran with Carbon Supported Copper, Nickel, and Iron Catalysts. ChemistrySelect 2017, 2, 51–60. [Google Scholar] [CrossRef]
- Hutchings, G.S.; Luc, W.; Lu, Q.; Zhou, Y.; Vlachos, D.G.; Jiao, F. Nanoporous Cu–Al–Co Alloys for Selective Furfural Hydrodeoxygenation to 2-Methylfuran. Ind. Eng. Chem. Res. 2017, 56, 3866–3872. [Google Scholar] [CrossRef]
- Smirnov, A.; Geng, Z.; Khromova, S.; Zavarukhin, S.; Bulavchenko, O.; Saraev, A.; Kaichev, V.; Ermakov, D.; Yakovlev, V. Nickel molybdenum carbides: Synthesis, characterization, and catalytic activity in hydrodeoxygenation of anisole and ethyl caprate. J. Catal. 2017, 354, 61–77. [Google Scholar] [CrossRef]
- Shilov, I.N.; Smirnov, A.A.; Bulavchenko, O.A.; Yakovlev, V.A. Effect of Ni–Mo Carbide Catalyst Formation on Furfural Hydrogenation. Catalysts 2018, 8, 560. [Google Scholar] [CrossRef]
- Burueva, D.B.; Smirnov, A.A.; Bulavchenko, O.A.; Prosvirin, I.P.; Gerasimov, E.Y.; Yakovlev, V.A.; Kovtunov, K.V.; Koptyug, I.V. Pairwise Parahydrogen Addition Over Molybdenum Carbide Catalysts. Top. Catal. 2020, 63, 2–11. [Google Scholar] [CrossRef]
- Lee, W.-S.; Wang, Z.; Zheng, W.; Vlachos, D.; Bhan, A. Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts. Catal. Sci. Technol. 2014, 4, 2340–2352. [Google Scholar] [CrossRef]
- Xiong, K.; Lee, W.-S.; Bhan, A.; Chen, J.G. Molybdenum Carbide as a Highly Selective Deoxygenation Catalyst for Converting Furfural to 2-Methylfuran. ChemSusChem 2014, 7, 2146–2149. [Google Scholar] [CrossRef]
- McManus, J.R.; Vohs, J.M. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100). Surf. Sci. 2014, 630, 16–21. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, L.; Huang, J.; Feng, Z.; Xiong, Q.; Ye, Z.; Chen, Z.; Li, X.; Yu, Z. Self-supported nickel-doped molybdenum carbide nanoflower clusters on carbon fiber paper for an efficient hydrogen evolution reaction. Nanoscale 2021, 13, 8264–8274. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wang, Z.; Lin, Z.; Shen, S.; Zhong, W. Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction. Chin. J. Struct. Chem. 2023, 100035. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Wang, Y.; Shen, S.; Zhang, Q.; Wang, J.; Zhong, W. Nontrivial Topological Surface States in Ru3Sn7 toward Wide pH-Range Hydrogen Evolution Reaction. Adv. Mater. 2023, 2302007. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Selishcheva, S.A.; Yakovlev, V.A. Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol. Catalysts 2018, 8, 595. [Google Scholar] [CrossRef]
- Magar, S.; Kamble, S.; Mohanraj, G.T.; Jana, S.K.; Rode, C. Solid-Acid-Catalyzed Etherification of Glycerol to Potential Fuel Additives. Energy Fuels 2017, 31, 12272–12277. [Google Scholar] [CrossRef]
- Aguado-Deblas, L.; Estevez, R.; Russo, M.; La Parola, V.; Bautista, F.M.; Testa, M.L. Microwave-Assisted Glycerol Etherification Over Sulfonic Acid Catalysts. Materials 2020, 13, 1584. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Wang, S.; Gong, J. The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2–SiO2 for transesterification of dimethyl oxalate with phenol: A comparative investigation. Appl. Catal. B Environ. 2007, 77, 125–134. [Google Scholar] [CrossRef]
- Rajagopal, S.; Marzari, J.; Miranda, R. Silica-Alumina-Supported Mo Oxide Catalysts: Genesis and Demise of Brønsted-Lewis Acidity. J. Catal. 1995, 151, 192–203. [Google Scholar] [CrossRef]
- Ma, X.; Gong, J.; Wang, S.; Gao, N.; Wang, D.; Yang, X.; He, F. Reactivity and surface properties of silica supported molybdenum oxide catalysts for the transesterification of dimethyl oxalate with phenol. Catal. Commun. 2004, 5, 101–106. [Google Scholar] [CrossRef]
- Fuente-Hernández, A.; Lee, R.; Béland, N.; Zamboni, I.; Lavoie, J.-M. Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst. Energies 2017, 10, 286. [Google Scholar] [CrossRef]
- Li, C.P.; Proctor, A.; Hercules, D.M. Curve Fitting Analysis of ESCA Ni2p Spectra of Nickel-Oxygen Compounds and Ni/Al2O3Catalysts. Appl. Spectrosc. 1984, 38, 880–886. [Google Scholar] [CrossRef]
- Khromova, S.A.; Smirnov, A.A.; Bulavchenko, O.A.; Saraev, A.A.; Kaichev, V.V.; Reshetnikov, S.I.; Yakovlev, V.A. Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl. Catal. A Gen. 2014, 470, 261–270. [Google Scholar] [CrossRef]
- Smirnov, A.; Khromova, S.; Ermakov, D.; Bulavchenko, O.; Saraev, A.; Aleksandrov, P.; Kaichev, V.; Yakovlev, V. The composition of Ni-Mo phases obtained by NiMoOx-SiO2 reduction and their catalytic properties in anisole hydrogenation. Appl. Catal. A Gen. 2016, 514, 224–234. [Google Scholar] [CrossRef]
- Bearden, J.A.; Burr, A.F. Reevaluation of X-ray Atomic Energy Levels. Rev. Mod. Phys. 1967, 39, 125–142. [Google Scholar] [CrossRef]
- Chen, W.-F.; Wang, C.-H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J.T.; Zhu, Y.; Adzic, R.R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943–951. [Google Scholar] [CrossRef]
- He, C.; Tao, J. Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction. RSC Adv. 2016, 6, 9240–9246. [Google Scholar] [CrossRef]
- Rochet, A.; Baubet, B.; Moizan, V.; Devers, E.; Hugon, A.; Pichon, C.; Payen, E.; Briois, V. Influence of the Preparation Conditions of Oxidic NiMo/Al2O3 Catalysts on the Sulfidation Ability: A Quick-XAS and Raman Spectroscopic Study. J. Phys. Chem. C 2015, 119, 23928–23942. [Google Scholar] [CrossRef]
- Ressler, T. Bulk Structural Investigation of the Reduction of MoO3 with Propene and the Oxidation of MoO2 with Oxygen. J. Catal. 2002, 210, 67–83. [Google Scholar] [CrossRef]
- Preda, I.; Soriano, L.; Díaz-Fernández, D.; Domínguez-Cañizares, G.; Gutiérrez, A.; Castro, G.R.; Chaboy, J. X-ray absorption study of the local structure at the NiO/oxide interfaces. J. Synchrotron Radiat. 2013, 20, 635–640. [Google Scholar] [CrossRef]
- Kang, J.-X.; Zhang, D.-F.; Guo, G.-C.; Yu, H.-J.; Wang, L.; Huang, W.-F.; Wang, R.-Z.; Guo, L.; Han, X.-D. Au Catalyzed Carbon Diffusion in Ni: A Case of Lattice Compatibility Stabilized Metastable Intermediates. Adv. Funct. Mater. 2018, 28, 1706434. [Google Scholar] [CrossRef]
- Guerrero-Torres, A.; Jiménez-Gómez, C.P.; Cecilia, J.A.; García-Sancho, C.; Quirante-Sánchez, J.J.; Mérida-Robles, J.M.; Maireles-Torres, P. Influence of the Incorporation of Basic or Amphoteric Oxides on the Performance of Cu-Based Catalysts Supported on Sepiolite in Furfural Hydrogenation. Catalysts 2019, 9, 315. [Google Scholar] [CrossRef]
- German, D.; Kolobova, E.; Pakrieva, E.; Carabineiro, S.A.C.; Sviridova, E.; Perevezentsev, S.; Alijani, S.; Villa, A.; Prati, L.; Postnikov, P.; et al. The Effect of Sibunit Carbon Surface Modification with Diazonium Tosylate Salts of Pd and Pd-Au Catalysts on Furfural Hydrogenation. Materials 2022, 15, 4695. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Shilov, I.N.; Bulavchenko, O.A.; Saraev, A.; Yakovlev, V.A. Hydrotreatment of Anisole and Furfural as Model Compounds of Bio-oil over Chromium Modified Nickel-Based Catalysts. ChemistrySelect 2019, 4, 7317–7326. [Google Scholar] [CrossRef]
- Selishcheva, S.A.; Smirnov, A.A.; Fedorov, A.V.; Bulavchenko, O.A.; Saraev, A.A.; Lebedev, M.Y.; Yakovlev, V.A. Highly Active CuFeAl-containing Catalysts for Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catalysts 2019, 9, 816. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–6024. [Google Scholar] [CrossRef]
- Chernyshov, A.; Veligzhanin, A.; Zubavichus, Y. Structural Materials Science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 603, 95–98. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-ray Absorption Spectroscopy Using IFEF-FIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef]
Sample | Surface Area BET, m2/g | Average Pore Diameter, nm |
---|---|---|
Ni0.1MoC-SiO2 | 11.3 | 4.3 |
SiO2 | 365 | 7.4 |
γ-Al2O3 | 205 | 10.2 |
C | 469 | 6.4 |
Ni0.1MoC/SiO2 | 264 | 7.1 |
Ni0.1MoC/Al2O3 | 168 | 9.3 |
Ni0.1MoC/C | 148 | 11.3 |
Catalyst | [Ni]/[C] | [Mo]/[C] | [O]/[C] | [Ni]/[Mo] |
---|---|---|---|---|
Ni0.1MoC/C | 0.0017 | 0.019 | 0.11 | 0.088 |
Sample | Mo K-Edge | Ni K-Edge | ||||
---|---|---|---|---|---|---|
Mo, % | MoO2, % | MoO3, % | Mo2C, % | Ni, % | NiO, % | |
Ni0.1Mo/Al2O3 | 0 | 0 | 58 | 42 | 32 | 68 |
Ni0.1Mo/SiO2 | 10 | 0 | 34 | 56 | 49 | 51 |
Mo2C/SiO2 | 0 | 0 | 25 | 75 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnov, A.; Shilov, I.N.; Alekseeva, M.V.; Bulavchenko, O.A.; Saraev, A.A.; Yakovlev, V.A. The Effect of Support on Catalytic Performance of Ni-Doped Mo Carbide Catalysts in 2-Methylfuran Production. Catalysts 2023, 13, 870. https://doi.org/10.3390/catal13050870
Smirnov A, Shilov IN, Alekseeva MV, Bulavchenko OA, Saraev AA, Yakovlev VA. The Effect of Support on Catalytic Performance of Ni-Doped Mo Carbide Catalysts in 2-Methylfuran Production. Catalysts. 2023; 13(5):870. https://doi.org/10.3390/catal13050870
Chicago/Turabian StyleSmirnov, Andrey, Ivan N. Shilov, Maria V. Alekseeva, Olga A. Bulavchenko, Andrey A. Saraev, and Vadim A. Yakovlev. 2023. "The Effect of Support on Catalytic Performance of Ni-Doped Mo Carbide Catalysts in 2-Methylfuran Production" Catalysts 13, no. 5: 870. https://doi.org/10.3390/catal13050870