Transition Metal-Free Synthesis of 3-Acylquinolines through Formal [4+2] Annulation of Anthranils and Enaminones
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Experimental Section
4.1. Phenyl(quinolin-3-yl)methanone (3aa)
4.2. Quinolin-3-yl(p-tolyl)methanone (3ab)
4.3. (4-Methoxyphenyl)(quinolin-3-yl)methanone (3ac)
4.4. (4-Phenoxyphenyl)(quinolin-3-yl)methanone (3ad)
4.5. (4-(Dimethylamino)phenyl)(quinolin-3-yl)methanone (3ae)
4.6. (Methylthio)phenyl)(quinolin-3-yl)methanone (3af)
4.7. (4-Fluorophenyl)(quinolin-3-yl)methanone (3ag)
4.8. (4-Chlorophenyl)(quinolin-3-yl)methanone (3ah)
4.9. (4-Bromophenyl)(quinolin-3-yl)methanone (3ai)
4.10. (4-Iodophenyl)(quinolin-3-yl)methanone (3aj)
4.11. 4-(Quinoline-3-carbonyl)benzonitrile (3ak)
4.12. (4-Nitrophenyl)(quinolin-3-yl)methanone (3al)
4.13. Quinolin-3-yl(4-(trifluoromethyl)phenyl)methanone (3am)
4.14. [1,1′-Biphenyl]-4-yl(quinolin-3-yl)methanone (3an)
4.15. Quinolin-3-yl(o-tolyl)methanone (3ao)
4.16. (2-Fluorophenyl)(quinolin-3-yl)methanone (3ap)
4.17. (2-chlorophenyl)(quinolin-3-yl)methanone (3aq)
4.18. Quinolin-3-yl(m-tolyl)methanone (3ar)
4.19. (3-Bromophenyl)(quinolin-3-yl)methanone (3as)
4.20. (3-Chlorophenyl)(quinolin-3-yl)methanone (3at)
4.21. (2,4-Dimethoxyphenyl)(quinolin-3-yl)methanone (3au)
4.22. (2,4-Difluorophenyl)(quinolin-3-yl)methanone (3av)
4.23. (2,4-Dichlorophenyl)(quinolin-3-yl)methanone (3aw)
4.24. Benzo[d][1,3]dioxol-5-yl(quinolin-3-yl)methanone (3ax)
4.25. Naphthalen-2-yl(quinolin-3-yl)methanone (3ay)
4.26. Quinolin-3-yl(thiophen-2-yl)methanone (3az)
4.27. Furan-2-yl(quinolin-3-yl)methanone (3az′)
4.28. (6-Methoxyquinolin-3-yl)(phenyl)methanone (3ba)
4.29. (6-Fluoroquinolin-3-yl)(phenyl)methanone (3ca)
4.30. (6-Chloroquinolin-3-yl)(phenyl)methanone (3da)
4.31. (6-Bromoquinolin-3-yl)(phenyl)methanone (3ea)
4.32. (7-Fluoroquinolin-3-yl)(phenyl)methanone (3fa)
4.33. (7-Chloroquinolin-3-yl)(phenyl)methanone (3ga)
4.34. (7-Bromoquinolin-3-yl)(phenyl)methanone (3ha)
4.35. Phenyl(7-(trifluoromethyl)quinolin-3-yl)methanone (3ia)
4.36. Methyl 3-benzoylquinoline-7-carboxylate (3ja)
4.37. (6,8-Dichloroquinolin-3-yl)(phenyl)methanone (3ka)
4.38. (6,7-Dimethoxyquinolin-3-yl)(phenyl)methanone (3la)
4.39. [1,3]Dioxolo [4,5-g]quinolin-7-yl(phenyl)methanone (3ma)
4.40. (6-Chloro-4-phenylquinolin-3-yl)(phenyl)methanone (3na)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Behenna, D.C.; Stockdill, J.L.; Stoltz, B.M. The Biology and Chemistry of the Zoanthamine Alkaloids. Angew. Chem. Int. Ed. 2008, 47, 2365–2386. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, J.K.; Alumasa, J.N.; Yearick, K.; Ekoue-Kovi, K.A.; Casabianca, L.B.; de Dios, A.C.; Wolf, C.; Roepe, P.D. 4-N-, 4-S-, and 4-O-Chloroquine Analogues: Influence of Side Chain length and Quinolyl Nitrogen pK(a) on Activity vs Chloroquine Resistant Malaria. J. Med. Chem. 2008, 51, 3466–3479. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2008, 25, 166–187. [Google Scholar] [CrossRef] [PubMed]
- Rouffet, M.; de Oliveira, C.A.F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J.A.; Cohen, S.M. From Sensors to Silencers: Quinoline- and Benzimidazole-sulfonamides as Inhibitors for Zinc Proteases. J. Am. Chem. Soc. 2010, 132, 8232–8233. [Google Scholar] [CrossRef]
- Andrews, S.; Burgess, S.J.; Skaalrud, D.; Kelly, J.X.; Peyton, D.H. Reversal Agent and Linker Variants of Reversed Chloroquines: Activities against Plasmodium Falciparum. J. Med. Chem. 2010, 53, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Lord, A.M.; Mahon, M.F.; Lloyd, M.D.; Threadgill, M.D. Design, Synthesis, and Evaluation in vitro of Quinoline-8-carboxamides, a New Class of Poly(adenosine-diphosphate-ribose)polymerase-1 (PARP-1) Inhibitor. J. Med. Chem. 2009, 52, 868–877. [Google Scholar] [CrossRef]
- Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based Antifungals. Curr. Med. Chem. 2010, 17, 1960–1973. [Google Scholar] [CrossRef]
- Solomon, V.R.; Lee, H. Quinoline as a Privileged Scaffold in cancer Drug Discovery. Curr. Med. Chem. 2011, 18, 1488–1508. [Google Scholar] [CrossRef]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H.W.H.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium Tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Liu, C.; Zhang, D.; Lu, Z.; Geng, H.; Shuai, Z.; Zhu, D. Coordination Complexes of 2-(4-quinolyl)nitronyl Nitroxide with M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)]: Syntheses, Crystal Structures, and Magnetic Characterization. Inorg. Chem. 2004, 43, 4091–4098. [Google Scholar] [CrossRef]
- Hu, Y.-Z.; Zhang, D.; Thummel, R.P. Friedlander Approach for the Incorporation of 6-Bromoquinoline into Novel Chelating Ligands. Org. Lett. 2003, 5, 2251–2253. [Google Scholar] [CrossRef]
- Nakatani, K.; Sando, S.; Saito, I. Recognition of a Single Guanine Bulge by 2-Acylamino-1,8-naphthyridine. J. Am. Chem. Soc. 2000, 122, 2172–2177. [Google Scholar] [CrossRef]
- Nakatani, K.; Sando, S.; Saito, I. Improved Selectivity for the Binding of Naphthyridine Dimer to Guanine-guanine Mismatch. Bioorg. Med. Chem. 2001, 9, 2381–2385. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.H.; Marchand, C.; Delage, S.; Sun, J.-S.; Garestier, T.; Helene, C.; Bisagni, E. Synthesis of 13H-benzo[6,7]-and 13H-benzo[4,5]indolo[3,2-c]quinolines: A New Series of Potent Specific Ligands for Triplex DNA. J. Am. Chem. Soc. 1998, 120, 2501–2507. [Google Scholar] [CrossRef]
- Chiang, C.-L.; Shu, C.-F. Synthesis and Characterization of New Polyquinolines Containing 9,9′-Spirobifluorene Units. Chem. Mater. 2002, 14, 682–687. [Google Scholar] [CrossRef]
- Dong, J.; Wang, L.; Li, H.; Leng, X.; Guo, X.; Hu, Z.; Xu, X. Self-cyclization vs. Dimerization of O-alkenyl Arylisocyanides: Chemodivergent Synthesis of Quinolines and Pyrrolo-fused Diindoles. Org. Chem. Front. 2021, 8, 2595–2600. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Yang, J.; Xie, X.; Huang, H.; Li, Y. Iron-catalyzed Cascade Reaction of Ynone with O-aminoaryl Compounds: A Michael Addition–Cyclization Approach to 3-Carbonyl Quinolines. Tetrahedron Lett. 2011, 52, 530–533. [Google Scholar] [CrossRef]
- Marco-Contelles, J. Perez-Mayoral, E.; Samadi, A.; Carreiras, M.D.; Soriano, E. Recent Advances in the Friedlander Reaction. Chem. Rev. 2009, 109, 2652–2671. [Google Scholar] [CrossRef]
- Denmark, S.E.; Venkatraman, S. On the Mechanism of the Skraup–Doebner–Von Miller Quinoline Synthesis. J. Org. Chem. 2006, 71, 1668–1676. [Google Scholar] [CrossRef]
- Manske, R.H.F. The Chemistry of Quinolines. Chem. Rev. 1942, 30, 113–144. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Chen, X.; Zhang, X.; Yi, W. The One-pot Synthesis of Quinolines via Co(III)-catalyzed C-H Activation/Carbonylation/Cyclization of Anilines. Org. Biomol. Chem. 2017, 15, 9061–9065. [Google Scholar] [CrossRef] [PubMed]
- Wakade, S.B.; Tiwari, D.K.; Ganesh, P.; Phanindrudu, M.; Likhar, P.R.; Tiwari, D.K. Transition-metal-free Quinoline Synthesis from Acetophenones and Anthranils via Sequential One-carbon Homologation/Conjugate Addition/Annulation Cascade. Org. Lett. 2017, 19, 4948–4951. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yan, B.; Tao, H.; Zhang, Y.; Li, Y. Metal-free Photocatalyzed Aerobic Oxidative C(sp3)-H Functionalization of Glycine Derivatives: One-step Generation of Quinoline-fused Lactones. Org. Biomol. Chem. 2018, 16, 3816–3823. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Li, Y.Z.; Stepnicka, P.; Kitamura, M.; Liu, Y.J.; Nakajima, K.; Kotora, M. Coupling Reaction of Zirconacyclopentadienes with Dihalonaphthalenes and Dihalopyridines: A New Procedure for the Preparation of Substituted Anthracenes, Quinolines, and Isoquinolines. J. Am. Chem. Soc. 2002, 124, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; Peng, J.; Li, M. Copper(II)-Catalyzed Three-Component Cascade Annulation of Diaryliodoniums, Nitriles, and Alkynes: A Regioselective Synthesis of Multiply Substituted Quinolines. Angew. Chem. Int. Ed. 2013, 52, 5323–5327. [Google Scholar] [CrossRef]
- Yan, R.L.; Liu, X.X.; Pan, C.M.; Zhou, X.Q.; Li, X.N.; Kang, X.; Huang, G.S. Aerobic Synthesis of Substituted Quinoline from Aldehyde and Aniline: Copper-Catalyzed Intermolecular C-H Active and C-C Formative Cyclization. Org. Lett. 2013, 15, 4876–4879. [Google Scholar] [CrossRef]
- Wang, F.; Xu, P.; Wang, S.Y.; Ji, S.J. Cu(II)/Ag(I)-Catalyzed Cascade Reaction of Sulfonylhydrazone with Anthranils: Synthesis of 2-Aryl-3-sulfonyl Substituted Quinoline Derivatives. Org. Lett. 2018, 20, 2204–2207. [Google Scholar] [CrossRef]
- McNaughton, B.R.; Miller, B.L. A Mild and Efficient One-step Synthesis of Quinolines. Org. Lett. 2003, 5, 4257–4259. [Google Scholar] [CrossRef]
- Wu, J.L.; Cui, X.L.; Chen, L.M.; Jiang, G.J.; Wu, Y.J. Palladium-Catalyzed Alkenylation of Quinoline-N-oxides via C-H Activation under External-Oxidant-Free Conditions. J. Am. Chem. Soc. 2009, 131, 13888–13889. [Google Scholar] [CrossRef]
- Stanovnik, B.; Svete, J. Synthesis of Heterocycles from Alkyl 3-(Dimethylamino)propenoates and Related Enaminones. Chem. Rev. 2004, 104, 2433–2480. [Google Scholar] [CrossRef]
- Yan, K.; Liu, M.; Wen, J.; Liu, X.; Wang, X.; Sui, X.; Shang, W.; Wang, X. Synthesis of 3-Substituted Quinolines by Ruthenium-catalyzed aza-Michael Addition and Intramolecular Annulation of Enaminones with Anthranils. New J. Org. Chem. 2022, 46, 7329–7333. [Google Scholar] [CrossRef]
- Kaewmee, B.; Rukachaisirikul, V.; Kaeobamrung, J. Synthesis of quinolines via copper-catalyzed domino reactions of enaminones. Org. Biomol. Chem. 2017, 15, 7387–7739. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.-P.; Jing, Y.; Wei, L. Branched C=C and C-N Bond Cleavage on Enaminones toward the Synthesis of 3-Acyl Quinolines. Asian J. Org. Chem. 2017, 6, 666–668. [Google Scholar] [CrossRef]
- Wakade, S.B.; Tiwari, D.K.; Phanindrudu, M.; Pushpendra; Tiwari, D.K. Synthesis of 3-Keto-quinolines from Enaminones, Anilines and DMSO: Transition Metal Free One Pot Cascade. Tetrahedron 2019, 75, 4024–4030. [Google Scholar] [CrossRef]
- Gao, Y.; Hider, R.C.; Ma, Y. An Efficient 3-Acylquinoline Synthesis from Acetophenones and Anthranil via Csp3-H Bond Activation Mediated by Selectfluor. RSC Adv. 2019, 9, 10340–10344. [Google Scholar] [CrossRef]
- Rahul, P.; Veena, S.; John, J. Inverse Electron Demand Diels Alder Reaction of Aza-o-Quinone Methides and Enaminones: Accessing 3-Aroyl Quinolines and Indeno 1,2-b Quinolinones. J. Org. Chem. 2022, 87, 13708–13714. [Google Scholar] [CrossRef]
- Jiang, P.; Shan, Z.; Chen, S.; Wang, Q.; Jiang, S.; Zheng, H.; Deng, G.-J. Metal-Free Synthesis of Benzo a phenanthridines from Aromatic Aldehydes, Cyclohexanones, and Aromatic Amines. Chin. J. Chem. 2022, 40, 365–370. [Google Scholar] [CrossRef]
- Cai, Z.-N.; Feng, X.-X.; Zhang, Y.; Lu, C.-C.; Han, Y.-P.; Zhao, J. Transition-Metal-Free Catalyzed Dehydrative Coupling of Quinoline and Isoquinoline N-Oxides with Propargylic Alcohols. Chin. J. Chem. 2022, 40, 71–78. [Google Scholar] [CrossRef]
- Liu, S.-J.; Chen, Z.-H.; Chen, J.-Y.; Ni, S.-F.; Zhang, Y.-C.; Shi, F. Rational Design of Axially Chiral Styrene-Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angew. Chem. Int. Ed. 2022, 61, e202112226. [Google Scholar] [CrossRef]
- Medishetti, N.; Kale, A.; Nanubolu, J.B.; Atmakur, K. Iron(III)chloride Induced Synthesis of Pyrazolopyridines & Quinolines. Synth. Commun. 2020, 50, 3642–3651. [Google Scholar] [CrossRef]
- Ha, V.D.; Hoang, T.B.L.; Loan, T.B.T.; Hiep, Q.H.; Ha, V.L.; Nam, T.S.P. Copper-catalyzed One-pot Domino Reactions via C-H Bond Activation: Synthesis of 3-Aroylquinolines from 2-Aminobenzylalcohols and Propiophenones under Metal-organic Framework Catalysis. RSC Adv. 2018, 8, 31455–31464. [Google Scholar] [CrossRef]
- Tiwari, D.K.; Phanindrudu, M.; Wakade, S.B.; Nanubolu, J.B.; Tiwari, D.K. alpha, beta-Functionalization of Saturated Ketones with Anthranils via Cu-catalyzed Sequential Dehydrogenation/aza-Michael Addition/Annulation Cascade Reactions in One-pot. Chem. Commun. 2017, 53, 5302–5305. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.P.; Gao, Y. Domino Reactions Based on Combinatorial Bond Transformations in Electron-Deficient Tertiary Enamines. Chem. Rec. 2016, 16, 1164–1177. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.G.; Wang, J.H.; Wang, L.L.; Song, C.; Chen, K.H.; Zhu, J. Enaminones as Synthons for a Directed C-H Functionalization: Rh-III-Catalyzed Synthesis of Naphthalenes. Angew. Chem. Int. Ed. 2016, 55, 9384–9388. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xu, H. Rhodium-catalyzed C-H Activation/Cyclization of Enaminones with Sulfoxonium Ylides toward Polysubstituted Naphthalenes. Tetrahedron Lett. 2019, 60, 664–667. [Google Scholar] [CrossRef]
- Zou, M.C.; Liu, J.Z.; Tang, C.H.; Jiao, N. Rh-Catalyzed N-O Bond Cleavage of Anthranil: A C-H Amination Reagent for Simultaneous Incorporation of Amine and A Functional Group. Org. Lett. 2016, 18, 3030–3033. [Google Scholar] [CrossRef]
- Jin, H.M.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Gold-Catalyzed C-H Annulation of Anthranils with Alkynes: A Facile, Flexible, and Atom-Economical Synthesis of Unprotected 7-Acylindoles. Angew. Chem. Int. Ed. 2016, 55, 794–797. [Google Scholar] [CrossRef]
- Yu, S.J.; Tang, G.D.; Li, Y.Z.; Zhou, X.K.; Lan, Y.; Li, X.W. Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp(3))-H and Csp2-H under Rhodium(III) Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8696–8700. [Google Scholar] [CrossRef]
- Jin, H.M.; Tian, B.; Song, X.L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Gold-Catalyzed Synthesis of Quinolines from Propargyl Silyl Ethers and Anthranils through the Umpolung of a Gold Carbene Carbon. Angew. Chem. Int. Ed. 2016, 55, 12688–12692. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Yu, S.J.; Yang, X.F.; Li, X.W. Cooperative Co(III)/Cu(II)-Catalyzed C-N/N-N Coupling of Imidates with Anthranils: Access to 1H-Indazoles via C-H Activation. Org. Lett. 2016, 18, 3662–3665. [Google Scholar] [CrossRef]
- Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R. Copper-Catalyzed Direct, Regioselective Arylamination of N-Oxides: Studies to Access Conjugated pi-Systems. J. Org. Chem. 2017, 82, 8933–8942. [Google Scholar] [CrossRef]
- Xie, F.; Shen, B.X.; Li, X.W. Enantioselective Copper-Catalyzed Hydroamination of Vinylarenes with Anthranils. Org. Lett. 2018, 20, 7154–7157. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Sun, H.M.; Wang, Y.; Xie, F. Cu/Ag-Catalyzed Reaction of Azirines with Anthranils: Synthesis of (Quinazolin-2-yl)methanone Derivatives. Org. Lett. 2020, 22, 6756–6759. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.H.; Zhu, H.; Zhu, S.; Shi, K.; Yan, C.; Li, P.G. Copper-Catalyzed Ring-Opening/Reconstruction of Anthranils with Oxo-Compounds: Synthesis of Quinoline Derivatives. J. Org. Chem. 2019, 84, 12301–12313. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.K.; Xia, X.F.; Wang, D.; Zou, L.H. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or alpha, alpha, beta-Tricarbonyl Sulfoxonium Ylides. Org. Lett. 2020, 22, 1504–1509. [Google Scholar] [CrossRef]
- Shi, K.; Zhu, H.; Ren, F.; Liu, S.; Song, Y.; Li, W.; Zou, L.-H. Copper-catalyzed [3+2+1] Annulation of Anthranils with Phenylacetaldehydes: Synthesis of 8-Acylquinolines. Eur. J. Org. Chem. 2021, 2021, 1003–1006. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, R.; Xiao, F.; Li, T.; Mao, G.; Deng, G.-J. Four-Component Synthesis of 9H-Pyrimido 4,5-b indoles Using Ammonium Iodide as the Nitrogen Source. Catalysts 2023, 13, 623. [Google Scholar] [CrossRef]
- Gong, Z.-Y.; Yang, C.-L.; Wang, D.; Huang, L.; Dong, Z.-B. One-Pot Synthesis of Benzoxazole/Benzothiazole-Substituted Esters by Michael Addition: A Selective Construction of C-N/C-S Bonds. Catalysts 2023, 13, 658. [Google Scholar] [CrossRef]
- Duan, L.; Zhou, H.; Gu, Y.; Gong, P.; Qin, M. The Use of Enaminones and Enamines as Effective Synthons for MSA-catalyzed Regioselective Synthesis of 1,3,4-Tri- and 1,3,4,5-Tetrasubstituted Pyrazoles. New J. Chem. 2019, 43, 16131–16137. [Google Scholar] [CrossRef]
- Borah, A.; Goswami, L.; Neog, K.; Gogoi, P. DMF Dimethyl Acetal as Carbon Source for alfa-Methylation of Ketones: A Hydrogenation-Hydrogenolysis Strategy of Enaminones. J. Org. Chem. 2015, 80, 4722–4728. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Zhang, X.; Fan, X. Synthesis of 3-Acylquinolines through Cu-catalyzed Double C(sp3)-H Bond Functionalization of Saturated Ketones. Org. Chem. Front. 2017, 4, 612–616. [Google Scholar] [CrossRef]
Entry | Additive | Solvent | Temp. (°C) | Yield b (%) |
---|---|---|---|---|
1 | MSA | EtOH | 110 | 31 |
2 | MSA | HFIP | 110 | 5 |
3 | MSA | DME | 110 | 11 |
4 | MSA | n-octanol | 110 | 0 |
5 | MSA | dioxane | 110 | 18 |
6 | MSA | THF | 110 | 29 |
7 | MSA | DMSO | 110 | 0 |
8 | / | EtOH | 110 | 0 |
9 | MSA/KBr | EtOH | 110 | 58 |
10 | MSA/KBr | THF | 110 | 37 |
11 | MSA/KI | EtOH | 110 | 89 |
12 | MSA/NaI | EtOH | 110 | 90 |
13 | MSA/NaI | EtOH | 70 | 43 |
14 | MSA/NaI | EtOH | 80 | 65 |
15 | MSA/NaI | EtOH | 90 | 84 |
16 | MSA/NaI | EtOH | 120 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.-L.; Yang, J.-C.; Guo, Q.; Zou, L.-H. Transition Metal-Free Synthesis of 3-Acylquinolines through Formal [4+2] Annulation of Anthranils and Enaminones. Catalysts 2023, 13, 778. https://doi.org/10.3390/catal13040778
Zhang K-L, Yang J-C, Guo Q, Zou L-H. Transition Metal-Free Synthesis of 3-Acylquinolines through Formal [4+2] Annulation of Anthranils and Enaminones. Catalysts. 2023; 13(4):778. https://doi.org/10.3390/catal13040778
Chicago/Turabian StyleZhang, Kai-Ling, Jia-Cheng Yang, Qin Guo, and Liang-Hua Zou. 2023. "Transition Metal-Free Synthesis of 3-Acylquinolines through Formal [4+2] Annulation of Anthranils and Enaminones" Catalysts 13, no. 4: 778. https://doi.org/10.3390/catal13040778
APA StyleZhang, K.-L., Yang, J.-C., Guo, Q., & Zou, L.-H. (2023). Transition Metal-Free Synthesis of 3-Acylquinolines through Formal [4+2] Annulation of Anthranils and Enaminones. Catalysts, 13(4), 778. https://doi.org/10.3390/catal13040778