Pt/CeMnOx/Diatomite: A Highly Active Catalyst for the Oxidative Removal of Toluene and Ethyl Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Phase Analysis
2.2. Morphology
2.3. Textural and Surface Properties
2.4. Reducibility
2.5. Oxygen, Sulfur Dioxide, and VOC Desorption Behaviors
2.6. In Situ DRIFTS Spectra of Toluene and Ethyl Acetate Oxidation
2.7. Catalytic Performance for Toluene and Ethyl Acetate Oxidation
2.8. Surface Element Compositions of the Samples after SO2 Treatment
2.9. Sulfur Dioxide and Water Resistance
3. Materials and Methods
3.1. Chemical Reagents
3.2. Preparation of CeMnOx/Diatomite
3.3. Preparation of Pt/CeMnOx/Diatomite, Pt/CeMnOx, Pt/CeMn2Ox/Diatomite, Pt/CeMn0.5Ox/Diatomite, and Pd/CeMnOx/Diatomite
3.4. Catalyst Characterization
3.5. Catalytic Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z.P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Reed, C.; Lee, Y.K.; Oyama, S.T. Acetone oxidation using ozone on manganese oxide catalysts. J. Phys. Chem. B 2005, 109, 17587–17596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Sui, S.H.; Zheng, X.M.; Cao, R.R.; Zhang, P.Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low-temperatures. Appl. Catal. B 2019, 257, 117878. [Google Scholar] [CrossRef]
- Darif, B.; Ojala, S.; Pirault-Roy, L.; Bensitel, M.; Brahmi, R.; Keiski, R.L. Study on the catalytic oxidation of DMDS over Pt-Cu catalysts supported on Al2O3, AlSi2O and SiO2. Appl. Catal. B 2016, 181, 24–33. [Google Scholar] [CrossRef]
- Lu, H.F.; Zhou, Y.; Han, W.F.; Huang, H.F.; Chen, Y.F. High thermal stability of ceria based mixed oxide catalysts supported on ZrO2 for toluene combustion. Catal. Sci. Technol. 2013, 3, 1480. [Google Scholar] [CrossRef]
- Ezzatahmadi, N.; Bao, T.; Liu, H.M.; Millar, G.J.; Ayoko, G.A.; Zhu, J.X.; Zhu, R.L.; Liang, X.L.; He, H.P.; Xi, Y.F. Catalytic degradation of orange II in aqueous solution using diatomite-supported bimetallic Fe/Ni nanoparticles. RSC Adv. 2018, 8, 7687–7696. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Wang, Z.Y. Diatomite-supported Pd nanoparticles: An efficient catalyst for Heck and Suzuki reactions. J. Org. Chem. 2006, 71, 7485–7487. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Z.H.; Wu, W.; Xi, P.X.; Liu, D.; Ding, Z.Q.; Chen, X.N.; Wu, X.; Chen, S.W. Nanocomposites CoPt-x/diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: Diatomite boosted the catalytic activity and durability. Electrochim. Acta 2018, 284, 119–127. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Z.; Duan, Y.; Ma, R.; Zheng, S. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Appl. Surf. Sci. 2017, 412, 105–112. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.X.; Leng, X.; Sun, Z.M.; Zheng, S.L. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts. J. Hazard. Mater. 2015, 285, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xi, W.; Xie, Z.X.; You, Z.X.; Jiang, X.Z.; Han, B.; Lang, R.; Wu, C.D. High-loading Pt single-atom catalyst on CeO2-modified diatomite support. Chem. Asian J. 2021, 16, 2622–2625. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Yang, B.; Qi, Y.; Yang, J. Highly efficient photo-degradation of gaseous organic pollutants catalyzed by diatomite-supported titanium dioxide. Catalysts 2020, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Vikrant, K.; Szulejko, J.E.; Kim, K.H.; Dong, F. Thermocatalytic oxidation of a three-component mixture of volatile organic compounds by a titanium dioxide-supported platinum catalyst. J. Clean. Prod. 2021, 325, 129279. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst. J. Hazard. Mater. 2011, 185, 1236–1240. [Google Scholar] [CrossRef]
- Hou, Z.Y.; Feng, J.; Lin, T.; Zhang, H.L.; Zhou, X.Y.; Chen, Y.Q. The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene. Appl. Surf. Sci. 2018, 434, 82–90. [Google Scholar] [CrossRef]
- Ahn, C.W.; You, Y.W.; Heo, I.; Hong, J.S.; Jeon, J.K.; Ko, Y.D.; Kim, Y.; Park, H.; Suh, J.K. Catalytic combustion of volatile organic compound over spherical-shaped copper-manganese oxide. J. Ind. Eng. Chem. 2017, 47, 439–445. [Google Scholar] [CrossRef]
- Liu, P.; Wei, G.L.; Liang, X.L.; Chen, D.; He, H.P.; Chen, T.H.; Xi, Y.F.; Chen, H.L.; Han, D.H.; Zhu, J.X. Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: Dispersion, microstructure, and catalytic performance. Appl. Clay Sci. 2018, 161, 265–273. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Xu, W.; Xu, Z.; Chen, J.; Jia, H.; Chen, J. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene. Chem. Eng. J. 2017, 330, 281–293. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J.; Chen, L.; Feng, N.; Meng, J.; Fang, F.; Zhao, P.; Wang, L.; Wan, H.; Guan, G. Promoting diesel soot combustion efficiency over hierarchical brushlike α-MnO2 and Co3O4 nanoarrays by improving reaction sites. Ind. Eng. Chem. Res. 2019, 58, 13935–13949. [Google Scholar] [CrossRef]
- Tseng, T.K.; Chu, H.; Hsu, H.H. Characterization of γ-alumina-supported manganese oxide as an incineration catalyst for trichloroethylene. Environ. Sci. Technol. 2003, 37, 171–176. [Google Scholar] [CrossRef]
- Zhang, D.S.; Zhang, L.; Shi, L.Y.; Fang, C.; Li, H.R.; Gao, R.H.; Huang, L.; Zhang, J.P. In situ supported MnOx–CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 2013, 5, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Baumer, M.; Freund, H.J. Metal deposits on well-ordered oxide films. Prog. Surf. Sci. 1999, 61, 127–198. [Google Scholar] [CrossRef] [Green Version]
- He, Y.B.; Li, G.R.; Wang, Z.L.; Ou, Y.N.; Tong, Y.X. Pt nanorods aggregates with enhanced electrocatalytic activity toward methanol oxidation. J. Phys. Chem. C 2010, 114, 19175–19181. [Google Scholar] [CrossRef]
- Prabhuram, J.; Zhao, T.S.; Wong, C.W.; Guo, J.W. Synthesis and physical/electro-chemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells. J. Power Sources 2004, 134, 1–6. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.H.; Zheng, L.R.; Yan, Y.; Zhang, Y.F.; Chen, G.; Sun, S.R.; Zhang, J.J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 2450–2458. [Google Scholar] [CrossRef]
- Priolkar, K.R.; Bera, P.; Sarode, P.R.; Hegde, M.S.; Emura, S.; Kumashiro, R.; Lalla, N.P. Formation of CePdO solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation. Chem. Mater. 2002, 14, 2120–2128. [Google Scholar] [CrossRef]
- Weng, X.L.; Sun, P.F.; Long, Y.; Meng, Q.J.; Wu, Z.B. Catalytic oxidation of chlorobenzene over MnxCe1–xO2/HZSM-5 catalysts: A study with practical implications. Environ. Sci. Technol. 2017, 51, 8057–8066. [Google Scholar] [CrossRef]
- Pei, W.B.; Liu, Y.X.; Deng, J.G.; Zhang, K.F.; Hou, Z.Q.; Zhao, X.T.; Dai, H.X. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B 2019, 256, 117814. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, W.; Ma, K.; Cao, Y.; Xiong, Y.; Wu, S.; Tang, C.; Gao, F.; Dong, L. Sulfated temperature effects on the catalytic activity of CeO2 in NH3-selective catalytic reduction conditions. J. Phys. Chem. C 2015, 119, 1155–1163. [Google Scholar] [CrossRef]
- Ji, J.; Jing, M.; Wang, X.; Tan, W.; Guo, K.; Li, L.; Wang, X.; Song, W.; Cheng, L.; Sun, J. Activating low-temperature NH3-SCR catalyst by breaking the strong interface between acid and redox sites: A case of model Ce2(SO4)3–CeO2 study. J. Catal. 2021, 399, 212–223. [Google Scholar] [CrossRef]
- Shan, R.T.; Sheng, Z.T.; Hu, S.; Xiao, H.F.; Zhang, Y.H.; Zhang, J.H.; Wang, L.; Zhang, C.B.; Li, J.L. Enhancing oxidation reaction over Pt–MnO2 catalyst by activation of surface oxygen. J. Environ. Sci. 2023, in press. [CrossRef]
- Murugan, B.; Ramaswamy, A.V.; Srinivas, D.; Gopinath, C.S.; Ramaswamy, V. Nature of manganese species in Ce1−xMnxO2−δ solid solutions synthesized by the solution combustion route. Chem. Mater. 2005, 17, 3983–3993. [Google Scholar] [CrossRef]
- Zhao, H.J.; Dong, F.; Han, W.L.; Tang, Z.C. Study of morphology-dependent and crystal-plane effects of CeMnOx catalysts for 1,2-dichlorobenzene catalytic elimination. Ind. Eng. Chem. Res. 2019, 58, 18055–18064. [Google Scholar] [CrossRef]
- Tang, W.X.; Wu, X.F.; Li, D.Y.; Wang, Z.; Liu, G.; Liu, H.D.; Chen, Y.F. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: Effect of calcination temperature and preparation method. J. Mater. Chem. A 2014, 2, 2544–2554. [Google Scholar] [CrossRef]
- Hao, X.Q.; Deng, J.G.; Liu, Y.X.; Jing, L.; Wang, J.; Wang, Z.W.; Dai, H.X. Mesoporous NaxMnOy-supported platinum–cobalt bimetallic single-atom catalysts with good sulfur dioxide tolerance in propane oxidation. ACS Sustain. Chem. Eng. 2022, 10, 8326–8341. [Google Scholar] [CrossRef]
- Kim, S.C.; Shim, W.G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B 2010, 98, 180–185. [Google Scholar] [CrossRef]
- Du, H.; Wang, Y.; Arandiyan, H.; Younis, A.; Scott, J.; Qu, B.; Wan, T.; Lin, X.; Chen, J.; Chu, D. Design and synthesis of CeO2 nanowire/MnO2 nanosheet heterogeneous structure for enhanced catalytic properties. Mater. Today Commun. 2017, 11, 103–111. [Google Scholar] [CrossRef]
- Li, P.; He, C.; Cheng, J.; Ma, C.Y.; Dou, B.J.; Hao, Z.P. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods. Appl. Catal. B 2011, 101, 570–579. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, F.Y.; Li, J.H. Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion. ACS Catal. 2016, 6, 3433–3441. [Google Scholar] [CrossRef]
- Liao, Y.N.; Zhang, X.N.; Peng, R.S.; Zhao, M.Q.; Ye, D.Q. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal. Appl. Surf. Sci. 2017, 405, 20–28. [Google Scholar] [CrossRef]
- Li, J.; Na, H.; Zeng, X.; Zhu, T.; Liu, Z. In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn–Ag/HZSM-5 catalysts. Appl. Surf. Sci. 2014, 311, 690–696. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Jing, L.; Wang, Z.W.; Pei, W.B.; Yu, X.H.; Wang, J.; Dai, H.X. Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Appl. Catal. B 2021, 285, 119804. [Google Scholar] [CrossRef]
- Bai, S.X.; Dai, Q.G.; Chu, X.X.; Wang, X.Y. Dehydrochlorination of 1,2-dichloroethane over Ba-modified Al2O3 catalysts. RSC Adv. 2016, 6, 52564–52574. [Google Scholar] [CrossRef]
- Liu, X.L.; Han, Q.Z.; Shi, W.B.; Zhang, C.; Li, E.; Zhu, T.Y. Catalytic oxidation of ethyl acetate over Ru–Cu bimetallic catalysts: Further insights into reaction mechanism via in situ FTIR and DFT studies. J. Catal. 2019, 369, 482–492. [Google Scholar] [CrossRef]
- Rainone, F.; Bulushev, D.A.; Kiwi-Minsker, L.; Renken, A. DRIFTS and transient-response study of vanadia/titania catalysts during toluene partial oxidation. Phys. Chem. Chem. Phys. 2003, 5, 4445–4449. [Google Scholar] [CrossRef] [Green Version]
- Naydenov, A.; Velinova, R.; Blin, J.-L.; Michelin, L.; Lebeau, B.; Kolev, H.; Karakirova, Y.; Karashanova, D.; Vidal, L.; Dotzeva, A.; et al. Reaction kinetics and mechanism of VOCs combustion on Mn-Ce-SBA-15. Catalysts 2022, 12, 583. [Google Scholar] [CrossRef]
- Behar, S.; Gómez-Mendoza, N.A.; Gómez-García, M.A.; Swierczynski, D.; Quignard, F.; Tanchoux, N. Study and modelling of kinetics of the oxidation of VOC catalyzed by nanosized Cu–Mn spinels prepared via an alginate route. Appl. Catal. A 2015, 504, 203–210. [Google Scholar] [CrossRef]
- Chen, B.; Bai, C.; Cook, R.; Wright, J.; Wang, C. Gold/cobalt oxide catalysts for oxidative destruction of dichloromethane. Catal. Today 1996, 30, 15–20. [Google Scholar] [CrossRef]
- Xie, S.H.; Liu, Y.X.; Deng, J.G.; Yang, J.; Zhao, X.T.; Han, Z.; Zhang, K.F.; Wang, Y.; Arandiyan, H.; Dai, H.X. Mesoporous CoO-supported palladium nanocatalysts with high performance for o-xylene combustion. Catal. Sci. Technol. 2018, 8, 806–816. [Google Scholar] [CrossRef]
- Wu, L.K.; Deng, J.G.; Liu, Y.X.; Jing, L.; Yu, X.H.; Zhang, X.; Gao, R.Y.; Pei, W.B.; Hao, X.Q.; Rastegarpanah, A.; et al. Pd/silicalite-1: Pd/silicalite-1: An highly active catalyst for the oxidative removal of toluene. J. Environ. Sci. 2022, 116, 209–219. [Google Scholar] [CrossRef]
- Niu, L.J.; Xian, G.; Long, Z.Q.; Zhang, G.M.; Zhou, N.Y. MnCeOx/diatomite catalyst for persulfate activation to degrade organic pollutants. J. Environ. Sci. 2020, 89, 206–217. [Google Scholar] [CrossRef]
- Liu, P.; He, P.; Wei, G.L.; Liu, D.; Liang, X.L.; Chen, T.H.; Zhu, J.X.; Zhu, R.L. An efficient catalyst of manganese supported on diatomite for toluene oxidation: Manganese species, catalytic performance, and structure activity relationship. Microporous Mesoporous Mater. 2017, 239, 101–110. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, J.; Zhang, Q.; Liu, Z.; Fu, M.; Wu, J.; Hu, Y.; Ye, D. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx–CeO2 catalyst derived from MOF template. Chem. Eng. J. 2019, 371, 78–87. [Google Scholar] [CrossRef]
- Li, Q.; Zhai, Z.; Xu, Y.; Jia, L.S.; Huang, J.L.; Sun, D.H.; Li, Q.B. Diatomite supported Pt nanoparticles as efficient catalyst for benzene removal. Ind. Eng. Chem. Res. 2019, 58, 14008–14015. [Google Scholar] [CrossRef]
- He, C.; Li, P.; Cheng, J.; Hao, Z.P.; Xu, Z.P. A Comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: Mutual effects and kinetics. Water Air Soil Pollut. 2010, 209, 365–376. [Google Scholar] [CrossRef]
- Dong, N.; Chen, M.Y.; Ye, Q.; Zhang, D.; Dai, H.X. An investigation on catalytic performance and reaction mechanisms of Fe/OMS-2 for the oxidation of carbon monoxide, ethyl acetate, and toluene. J. Environ. Sci. 2022, 112, 258–268. [Google Scholar] [CrossRef]
- Saper, S.M.; Kondarides, D.I.; Verykios, X.E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Appl. Catal. B 2011, 103, 275–286. [Google Scholar]
- Su, X.W.; Jin, L.Y.; Lu, Q.; Luo, M.F. Pd/Ce0.9Cu0.1O1.9–Y2O3 catalysts for catalytic combustion of toluene and ethyl acetate. J. Ind. Eng. Chem. 2009, 15, 683–686. [Google Scholar] [CrossRef]
- Beauchet, R.; Magnoux, P.; Mijoin, J. Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts. Catal. Today 2007, 124, 118–123. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Vpore (cm3/g) | dpore (nm) |
---|---|---|---|
diatomite | 24.3 | 0.17 | 11.7 |
CeMnOx | 128.2 | 0.35 | 10.9 |
CeMnOx/diatomite | 113.7 | 0.33 | 11.8 |
Pt/CeMnOx/diatomite | 51.7 | 0.31 | 24.1 |
Sample | Surface Element Composition (mol/mol) | H2 Consumption (mmol/gcat) | |||
---|---|---|---|---|---|
Ptδ+/Pt0 a Molar Ratio | (Mn2+ + Mn3+)/Mn4+ Molar Ratio | Ce3+/Ceδ+ b Molar Ratio | Oads/Olatt Molar Ratio | ||
CeMnOx | – | – | – | – | 2.63 |
CeMnOx/diatomite | – | – | – | – | 2.78 |
Pt/CeMnOx | 2.91 | 2.27 | 0.09 | 0.21 | 2.67 |
Pt/CeMnOx/diatomite | 4.23 | 3.83 | 0.1 | 0.29 | 2.97 |
Sample | Toluene Oxidation Activity | Toluene Oxidation at 220 °C | Ethyl Acetate Oxidation Activity | Ethyl Acetate Oxidation at 200 °C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T50% (°C) | T90% (°C) | Ea (kJ mol−1) | TOFPt or Pd (×10−3 s−1) | Specific Reaction Rate (μmol gcat−1 s−1) | T50% (°C) | T90% (°C) | Ea (kJ mol−1) | TOFPt or Pd (×10−3 s−1) | Specific Reaction Rate (μmol gcat−1 s−1) | |
0.27Pd/CeMnOx/diatomite | 236 | 259 | 76 | 22.4 | 0.61 | 211 | 229 | 55 | 8.9 | 0.27 |
0.32Pt/CeMnOx/diatomite | 218 | 233 | 69 | 30.2 | 1.56 | 182 | 210 | 38 | 22.8 | 1.04 |
0.33Pt/CeMn2Ox/diatomite | 220 | 230 | 67 | 21.1 | 1.06 | 196 | 212 | 50 | 13.5 | 0.68 |
0.30Pt/CeMn0.5Ox/diatomite | 228 | 245 | 72 | 15.4 | 0.59 | 205 | 221 | 54 | 8.3 | 0.31 |
0.33Pt/CeMnOx | 216 | 230 | 61 | 25.7 | 1.29 | 200 | 210 | 42 | 7.3 | 0.42 |
Sample | Surface Element Molar Ratio (mol/mol) | ||||
---|---|---|---|---|---|
Pt2+/Ptδ+ | Mn2+/Mnδ+ | Ce3+/(Ce4+ + Ce3+) | Oads/Olatt | S6+/S4+ | |
Pt/CeMnOx | 0.20 | 0.12 | 0.09 | 0.21 | – |
Pt/CeMnOx/diatomite | 0.26 | 0.18 | 0.10 | 0.29 | – |
Pt/CeMnOx (SO2-treated) | 0.30 | 0.39 | 0.12 | 0.16 | 3.21 |
Pt/CeMnOx/diatomite (SO2-treated) | 0.22 | 0.34 | 0.10 | 0.25 | 2.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liu, Y.; Deng, J.; Jing, L.; Hou, Z.; Gao, R.; Dai, H. Pt/CeMnOx/Diatomite: A Highly Active Catalyst for the Oxidative Removal of Toluene and Ethyl Acetate. Catalysts 2023, 13, 676. https://doi.org/10.3390/catal13040676
Li L, Liu Y, Deng J, Jing L, Hou Z, Gao R, Dai H. Pt/CeMnOx/Diatomite: A Highly Active Catalyst for the Oxidative Removal of Toluene and Ethyl Acetate. Catalysts. 2023; 13(4):676. https://doi.org/10.3390/catal13040676
Chicago/Turabian StyleLi, Linlin, Yuxi Liu, Jiguang Deng, Lin Jing, Zhiquan Hou, Ruyi Gao, and Hongxing Dai. 2023. "Pt/CeMnOx/Diatomite: A Highly Active Catalyst for the Oxidative Removal of Toluene and Ethyl Acetate" Catalysts 13, no. 4: 676. https://doi.org/10.3390/catal13040676
APA StyleLi, L., Liu, Y., Deng, J., Jing, L., Hou, Z., Gao, R., & Dai, H. (2023). Pt/CeMnOx/Diatomite: A Highly Active Catalyst for the Oxidative Removal of Toluene and Ethyl Acetate. Catalysts, 13(4), 676. https://doi.org/10.3390/catal13040676