Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review
Abstract
:1. Introduction
2. Biomass-Derived Carbon-Based Catalysts for Biodiesel Production
2.1. Acid-Functionalized Catalysts
2.2. Base-Functionalized Catalysts
3. Biomass-Derived Carbon-Based Catalysts for Biomass Conversion and Organic Synthesis
4. Biomass-Derived Carbon-Based Catalysts for Electrocatalysis
Catalyst | Carbon Source | Synthesis Conditions | Crystal Structure | Porosity | Onset Potential, V | Reaction | Catalyst Stability | Reference |
---|---|---|---|---|---|---|---|---|
Pd/N-C | Mildew-starting orange waste | Juice extraction, mixing with K2PdCl4, hydrothermal carbonization at 180 °C for 4 h, and pyrolysis in nitrogen atmosphere at 800 °C for 2 h. | Graphite-like structure with pyridinic and graphite N | Microporous, SA * = 26 m2/g | 0.5 | Methanol oxidation | 90% in 50 cycles | [70] |
N-C | N-rich yuba | Carbonization at 850 °C, followed by impregnation. | Graphite-like structure with pyridinic and pyrrolic N | Mesoporous, SA * = 740–1000 m2/g | 0.97 | Fuel cells | 85% after 5000 s | [71] |
Fe3C/C | Cellulose fiber | Impregnation with an iron salt, addition of dicyandiamide, carbonization, and etching. | Fe3C crystals over a graphite-like structure | - | 0.98 | Oxygen reduction | 85% after 10,000 s | [72] |
FeOx/N-C | Acorn shell | Impregnation with melanin, (MgOH)2CO3, and NaCl, carbonization at 900 °C, treatment with hemin, and calcination in nitrogen atmosphere. | Graphite-like structure with pyridinic and pyrrolic N, Fe3O4, and Fe2O3 coated with C | SA * = 819 m2/g | 0.88 in ORR 0.72 in HRR | ORR and HRR | 73% after 36,000 s | [73] |
N-C | Wood char | Activation with alkali and doping with nitrogen. | Graphite-like structure with pyridinic and pyrrolic N | Microporous, SA * = 1924 m2/g | 0.2 | ORR | 95% after 1200 min | [74] |
Co/C | Cotton carbon fiber | Impregnation with CoCl2, ultrasonification, and carbonization at 900 °C for 3 h. | Graphite-like structure with amorphous carbon | Mesoporous, SA * = 358 m2/g | - | Lie-SeS2 cells | 70% after 45 cycles | [75] |
Ru/N-C | Yeasts | Impregnation with RuCl3, calcinations at 950 °C for 5 h, and doping with nitrogen. | Graphite-like structure | - | 0.2 | HRR | 85% after 60 h | [76] |
Fe3O4/N-C | Yeasts | Impregnation with Fe(NO3)3, calcinations at 950 °C for 5 h, and doping with nitrogen. | Graphite-like structure | - | 0.3 | ORR | 85% after 60 h | [76] |
Mo/C | Sugar beet, corn stover, pine, and miscanthus | Impregnation with Mo salt, pyrolysis at 600 °C for 6 h, and NaCl/NaF salt flux. | Graphite-like structure | - | 0.3–0.5 V | HRR | - | [77] |
N-C | Cocoon silk | Carbonization followed by activation by KOH. | Graphite-like structure with pyridinic and pyrrolic N | - | 0.6 | ORR | - | [78] |
N-C | Cocoon silk | Pyrolysis followed by activation by ZnCl2. | 1D structure | - | 0.85 | ORR | 95% after 12,000 s | [79] |
N-C | Keratin | Precarbonization, activation with KOH, and treatment in ammonia at 1000 °C. | Grapheme-like 2D structure | - | 0.8 | ORR | 92% after 300 s | [80] |
N-C | Coconut shell | Carbonization followed by activation by H3PO4. | Graphite-like structure | Mesoporous, SA * = 1260 m2/g | 90% after 12 h | [81] | ||
N-C | Ophiopogon japonicus | Hydrothermal carbonization at 180 °C. | Carbon nanodot/nanosheet aggregates | - | 0.88 | ORR | - | [82] |
N-C | Basswood | Pyrolysis at 600 °C and activation in ammonia atmosphere. | Graphite-like structure | SA * = 1438 m2/g | 0.98 | ORR | 95% after 20 h | [83] |
N-C | Pinecone | Precarbonization at 800 °C and activation in ammonia. | Graphite-like structure | - | 0.95 | ORR | - | [84] |
N-C | Spent coffee grounds | Pyrolysis followed by activation by KOH. | Graphite-like structure | SA * = 1018 m2/g | 0.94 | ORR | 95% after 10,000 s | [85] |
N-C | Banana peels | Carbonization followed by activation by KOH, and treatment with ammonia | Graphite-like structure | SA * = 1756 m2/g | 0.98 | ORR | 95% after 10,000 s | [86] |
5. Conclusions and Future Prospective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elliott, D.C.; Hart, T.R. Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuels 2008, 23, 631–637. [Google Scholar] [CrossRef]
- Sharma, S.; Pollet, B.G. Support materials for PEMFC and. DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96–119. [Google Scholar] [CrossRef]
- Lam, E.; Luong, J.H.T. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catal. 2014, 4, 3393–3410. [Google Scholar] [CrossRef]
- Maroa, S.; Inambao, F. A review of sustainable biodiesel production using biomass-derived heterogeneous catalysts. Eng. Life Sci. 2021, 21, 790–824. [Google Scholar] [CrossRef] [PubMed]
- Alrobaian, A.; Rajasekar, V.; Alagumalai, A. Critical insight into biowaste-derived biocatalyst for biodiesel production. Environ. Prog. Sustain. Energy 2020, 39, e13391. [Google Scholar] [CrossRef]
- Smith, S.M.; Oopathum, C.; Weeramongkhonlert, V.; Smith, C.B. Transesterification of soybean oil using bovine bone waste as new catalyst. Bioresour. Technol. 2013, 143, 686–690. [Google Scholar] [CrossRef]
- Roschat, W.; Kacha, M.; Yoosuk, B.; Sudyoadsuk, T. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel 2012, 98, 194–202. [Google Scholar] [CrossRef]
- Pang, S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Nunoura, T.; Wade, S.R.; Bourke, J.P.; Antal, M.J. Studies of the flash carbonization process. 1. Propagation of the flaming pyrolysis reaction and performance of a catalytic afterburner. Ind. Eng. Chem. Res. 2006, 45, 585–599. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Titirici, M.-M.; Thomas, A.; Antonietti, M. Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 2007, 31, 787–789. [Google Scholar] [CrossRef]
- Titirici, M.-M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef]
- De, S.; Balu, A.M.; van der Waal, J.C.; Lique, R. Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications. ChemCatChem 2015, 7, 1608–1629. [Google Scholar] [CrossRef]
- Klinghoffer, N.B.; Castaldi, M.J.; Nzihou, A. Influence of char composition and inorganics on catalytic activity of char from biomass gasification. Fuel 2015, 157, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Bergman, P.C.A.; Boersma, A.R.; Zwart, R.W.R.; Kiel, J.H.A. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations; Report No. ECNC05013 Energy Research Centre of The Netherlands (ECN); Energy Research Centre of The Netherlands: Petten, The Netherlands, 2005; p. 71. [Google Scholar]
- Shokrolahi, A.; Zali, A.; Keshavarz, M.H. Wet carbon-based solid acid/NaNO3 as a mild and efficient reagent for nitration of aromatic compound under solvent free conditions. Chin. Chem. Lett. 2007, 18, 1064–1066. [Google Scholar] [CrossRef]
- Zong, M.H.; Duan, Z.Q.; Lou, W.Y.; Smith, T.J.; Wu, H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem. 2007, 5, 434–437. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Carbohydrate-derived Solid Acid Catalysts for Biodiesel Production from Low-Cost Feedstocks: A Review. Catal. Rev. Sci. Eng. 2014, 56, 187–219. [Google Scholar] [CrossRef]
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Domen, K.; Hayashi, S. A carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. [Google Scholar] [CrossRef]
- Shu, Q.; Zhang, Q.; Xu, G.; Nawaz, Z.; Wang, D.; Wang, J. Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process. Technol. 2009, 90, 1002–1008. [Google Scholar] [CrossRef]
- Dawodu, F.A.; Ayodele, O.O.; Xina, J.; Zhanga, S. Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. J. Chem. Technol. Biotechnol. 2014, 89, 1898–1909. [Google Scholar] [CrossRef]
- Ayodele, O.O.; Dawodu, F.A. Conversion of Calophyllum inophyllum Oil with a High Free Fatty Acid Content to Biodiesel using a Starch-Derived Catalyst. Energy Technol. 2014, 2, 912–920. [Google Scholar] [CrossRef]
- Lou, W.Y.; Zong, M.H.; Duan, Z.Q. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 2008, 99, 8752–8758. [Google Scholar] [CrossRef]
- Guo, F.; Xiu, Z.L.; Liang, Z.X. Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst. Appl. Energy 2012, 98, 47–52. [Google Scholar] [CrossRef]
- Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 2014, 154, 345–348. [Google Scholar] [CrossRef]
- Luque, R.; Clark, J.H. Biodiesel-Like Biofuels from Simultaneous Transesterification/Esterification of Waste Oils with a Biomass-Derived Solid Acid Catalyst. ChemCatChem. 2011, 3, 594–597. [Google Scholar] [CrossRef]
- Choksi, H.; Pandian, S.; Gandhi, Y.H.; Deepalakshmi, S. Studies on production of biodiesel from Madhuca indica oil using a catalyst derived from cotton stalk. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 43, 3424–3433. [Google Scholar] [CrossRef]
- Wong, W.-Y.; Lim, S.; Pang, Y.-L.; Chen, W.-H.; Lam, M.-K.; Tan, I.-S. Synthesis of glycerol-free fatty acid methyl ester using interesterification reaction based on solid acid carbon catalyst derived from low-cost biomass wastes. Int. J. Energy Res. 2020, 46, 147–162. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Kim, H.J.; Yang, S.-Y.; Song, H.-S.; Park, J.Y.; Park, Y.-L.; Han, Y.-H.; Choi, Y.-K. Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresour. Technol. 2020, 302, 122872. [Google Scholar] [CrossRef]
- Akinfalabi, S.-I.; Rashid, U.; Ngamcharussrivichai, C.; Nehdi, I.A. Synthesis of reusable biobased nano-catalyst from waste sugarcane bagasse for biodiesel production. Environ. Technol. Innov. 2020, 18, 100788–100801. [Google Scholar] [CrossRef]
- Meher, L.; Churamani, C.; Arif, M.; Ahmed, Z.; Naik, S. Jatropha curcas as a renewable source for bio-fuels—A review. Renew. Sustain. Energy Rev. 2013, 26, 397–407. [Google Scholar] [CrossRef]
- Leung, D.; Guo, Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol. 2006, 87, 883–890. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production—Process optimization using central composite design. Energy Convers. Manag. 2019, 189, 118–131. [Google Scholar] [CrossRef]
- Betiku, E.; Akintunde, A.M.; Ojumu, T.V. Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon’s plume (Bauhinia monandra) seed oil: A process parameters optimization study. Energy 2016, 103, 797–806. [Google Scholar] [CrossRef]
- Vadery, V.; Narayanan, B.N.; Ramakrishnan, R.M.; Cherikkallinmel, S.K.; Sugunan, S.; Narayanan, D.P.; Sasidharan, S. Room temperature production of jatropha biodiesel over coconut husk ash. Energy 2014, 70, 588–594. [Google Scholar] [CrossRef]
- Niju, S.; Kanna, S.K.A.; Ramalingam, V.; Kumar, M.S.; Balajii, M. Sugarcane bagasse derived biochar—A potential heterogeneous catalyst for transesterification process. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Inayat, A.; Jamil, F.; Raza, F.; Khurram, S.; Ghenai, C.; Al-Muhatseb, A.H. Upgradation of waste cooking oil to biodiesel in the presence of green catalyst derived from date seeds. Biofuels 2021, 12, 1245–1250. [Google Scholar] [CrossRef]
- Abdullah, R.F.; Rashid, U.; Hazmi, B.; Ibrahim, M.L.; Tsubota, T.; Alharthi, F.A. Potential heterogeneous nano-catalyst via integrating hydrothermal carbonization for biodiesel production using waste cooking oil. Chemosphere 2022, 286, 131913. [Google Scholar] [CrossRef]
- Atelge, M. Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis. Renew. Energy 2022, 198, 1–15. [Google Scholar] [CrossRef]
- Fernández, J.V.; Faria, D.N.; Santoro, M.C.; Mantovaneli, R.; Cipriano, D.F.; Brito, G.M.; Carneiro, M.T.W.; Schettino, M.A.; Gonzalez, J.L.; Freitas, J.C. Use of Unmodified Coffee Husk Biochar and Ashes as Heterogeneous Catalysts in Biodiesel Synthesis. BioEnergy Res. 2022. [Google Scholar] [CrossRef]
- Daimary, N.; Eldiehy, K.S.; Boruah, P.; Deka, D.; Bora, U.; Kakati, B.K. Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J. Environ. Chem. Eng. 2022, 10, 107108. [Google Scholar] [CrossRef]
- Yani, F.; Ulhaqi, R.; Pratiwi, W.; Pontas, K.; Husin, H. Utilization of water hyacinth-based biomass as a potential heterogeneous catalyst for biodiesel production. J. Phys. Conf. Ser. 2019, 1402, 055005. [Google Scholar] [CrossRef]
- Tarigan, J.B.; Singh, K.; Sinuraya, J.S.; Supeno, M.; Sembiring, H.; Tarigan, K.; Rambe, S.M.; Karo-Karo, J.A.; Sitepu, E.K. Waste Passion Fruit Peel as a Heterogeneous Catalyst for Room-Temperature Biodiesel Production. ACS Omega 2022, 7, 7885–7892. [Google Scholar] [CrossRef]
- Pang, J.; Wang, A.; Zheng, M.; Zhang, T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem. Commun. 2010, 46, 6935–6937. [Google Scholar] [CrossRef]
- Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. J. Am. Chem. Soc. 2008, 130, 12787–12793. [Google Scholar] [CrossRef]
- Guo, H.; Qi, X.; Li, L.; Smith, R.L., Jr. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresour. Technol. 2012, 116, 355–359. [Google Scholar] [CrossRef]
- Liu, M.; Jia, S.; Gong, Y.; Song, C.; Guo, X. Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid. Ind. Eng. Chem. Res. 2013, 52, 8167–8173. [Google Scholar] [CrossRef]
- Guo, H.; Lian, Y.; Yan, L.; Qi, X.; Smith, R.L., Jr. Cellulose-derived superparamagnetic carbonaceous solid acid catalyst. Green Chem. 2013, 15, 2167–2174. [Google Scholar] [CrossRef]
- Wang, J.J.; Xu, W.J.; Ren, J.W.; Liu, X.H.; Lu, G.Z.; Wang, Y.Q. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem. 2011, 13, 2678–2681. [Google Scholar] [CrossRef]
- Qi, X.H.; Guo, H.X.; Li, L.Y.; Smith, R.L., Jr. Acid-Catalyzed Dehydration of Fructose into 5-Hydroxymethylfurfural by Cellulose-Derived Amorphous Carbon. ChemSusChem 2012, 5, 2215–2220. [Google Scholar] [CrossRef]
- Ji, L.; Tang, Z.; Yang, D.; Ma, C.; He, Y.-C. Improved one-pot synthesis of furfural from corn stalk with heterogeneous catalysis using corn stalk as biobased carrier in deep eutectic solvent–water system. Bioresour. Technol. 2021, 340, 125691–125699. [Google Scholar] [CrossRef]
- Wen, Y.; Yu, Z.; Li, K.; Guo, H.; Dai, Y.; Yan, L. Fabrication of biobased heterogeneous solid Brønsted acid catalysts and their application on the synthesis of liquid biofuel 5-ethoxymethylfurfural from fructose. Green Energy Environ. 2018, 3, 384–391. [Google Scholar] [CrossRef]
- Liang, J.; Zha, J.; Zhao, N.; Tang, Z.; He, Y.; Ma, C. Valorization of Waste Lignocellulose to Furfural by Sulfonated Biobased Heterogeneous Catalyst Using Ultrasonic-Treated Chestnut Shell Waste as Carrier. Processes 2021, 9, 2269. [Google Scholar] [CrossRef]
- Kang, S.; Ye, J.; Chang, J. Recent Advances in Carbon-Based Sulfonated Catalyst: Preparation and Application. Int. Rev. Chem. Eng. 2013, 5, 133–144. [Google Scholar]
- Sahoo, B.; Formenti, D.; Topf, C.; Bachmann, S.; Scalone, M.; Junge, K.; Beller, M. Sustainable Biomass-Derived Catalysts for Selective Hydrogenation of Nitroarenes. ChemSusChem 2017, 10, 3035–3039. [Google Scholar] [CrossRef]
- Song, T.; Yang, Y. Metal Nanoparticles Supported on Biomass-Derived Hierarchical Porous Heteroatom-Doped Carbon from Bamboo Shoots Design, Synthesis and Applications. Chem. Rec. 2018, 19, 1283–1301. [Google Scholar] [CrossRef]
- Zhang, F.; Li, G.-D.; Chen, J.-S. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. J. Colloid Interface Sci. 2008, 327, 108–114. [Google Scholar] [CrossRef]
- Luque, R.; Clark, J.H. Water-tolerant Ru-Starbon (R) materials for the hydrogenation of organic acids in aqueous ethanol. Catal. Commun. 2010, 11, 928–931. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, J.; Fellinger, T.-P.; Antonietti, M.; Li, H.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem. Int. Ed. 2013, 52, 6028–6032. [Google Scholar] [CrossRef]
- Ojeda, M.; Balu, A.M.; Romero, A.A.; Esquinazi, P.; Ruokolainen, J.; Sixta, H.; Luque, R. MAGBONS: Novel Magnetically Separable Carbonaceous Nanohybrids from Porous Polysaccharides. ChemCatChem 2014, 6, 2847–2853. [Google Scholar] [CrossRef]
- Varila, T.; Makela, E.; Kupila, R.; Romar, H.; Hu, T.; Karinen, R.; Puurunen, R.L.; Lassi, U. Conversion of furfural to 2-methylfuran over CuNi catalysts supported on biobased carbon foams. Catal. Today 2021, 367, 16–27. [Google Scholar] [CrossRef]
- Liang, Y.; Han, J.; Wang, H.; Zhao, B.; Qin, L.; Wang, Y. Synthesis of Ni-Mg@HC catalyst derived from sugarcane bagasse and its application for producing syngas via CO2 dry reforming. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 18, 1–14. [Google Scholar] [CrossRef]
- Sahoo, B.; Surkus, A.-E.; Pohl, M.-M.; Radnik, J.; Schneider, M.; Bachmann, S.; Scalone, M.; Junge, K.; Beller, M. A Biomass-Derived Non-Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angew. Chem. 2017, 129, 11394–11399. [Google Scholar] [CrossRef]
- Gronnow, M.J.; Luque, R.; Macquarrie, D.J.; Clark, H. A novel highly active biomaterial supported palladium catalyst. Green Chem. 2005, 7, 552–557. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Luque, R.; Macquarrie, D.J.; White, R.J. Versatile mesoporous carbonaceous materials for acid catalysis. Green Chem. 2008, 10, 382–387. [Google Scholar] [CrossRef]
- Sk, M.P.; Jana, C.K.; Chattopadhyay, A. A gold–carbon nanoparticle composite as an efficient catalyst for homocoupling reaction. Chem. Commun. 2013, 49, 8235–8237. [Google Scholar]
- Zhang, Z.; Yang, S.; Li, H.; Zan, Y.; Li, X.; Zhu, Y.; Dou, M.; Wang, F. Sustainable Carbonaceous Materials Derived from Biomass as Metal-Free Electrocatalysts. Adw. Mater. 2019, 31, 1805718. [Google Scholar] [CrossRef]
- Da, Z.; Niu, X.; Li, X.; Zhang, W.; He, Y.; Pan, J.; Qui, F.; Yan, Y. From mildewy orange waste to natural reductant and catalyst support: Active palladium/biomass-derived carbonaceous hybrids for promoted methanol electro-oxidation. ChemElectroChem 2017, 4, 1372–1377. [Google Scholar] [CrossRef]
- Zhang, J.J.; Sun, Y.; Guo, L.K.; Sun, X.N.; Huang, N.B. Ball-Milling Effect on Biomass-Derived Nanocarbon Catalysts for the Oxygen Reduction Reaction. ChemistrySelect 2021, 6, 6019–6028. [Google Scholar] [CrossRef]
- Wei, J.; Liang, Y.; Hu, Y.; Kong, B.; Simon, G.P.; Zhang, J.; Jiang, S.P.; Wang, H. A Versatile Iron–Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction. Agnew. Chem. Int. Ed. 2016, 55, 1355–1359. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, J.; Wang, W.L.; Li, W.; Sun, M.; Wang, Y.; Wang, X.; Ye, J.; Rao, H. Electrocatalytic, Kinetic, and Mechanism Insights into the Oxygen-Reduction Catalyzed Based on the Biomass-Derived FeOx@N-Doped Porous Carbon Composites. Small 2021, 17, 2007326. [Google Scholar] [CrossRef]
- Kaare, K.; Yu, E.; Käämbre, T.; Volperts, A.; Dobele, G.; Zhurinsh, A.; Niaura, G.; TamasauskaiteTamasiunaite, L.; Norkus, E.; Kruusenberg, I. Biomass-derived Graphene-like Catalyst Material for Oxygen Reduction Reaction. ChemNanoMat 2021, 7, 307–313. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Jing, P.; Guo, Y.; Zhang, Y.; Wei, Y.; Wang, Q.; Zhang, Y.; Wu, H. Bioderived carbon fiber conductive networks with inlaid electrocatalysts as an ultralight freestanding interlayer for working Lie-SeS2 pouch cells. Carbon 2022, 189, 10–20. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Dang, N.K.; Sultan, S.; Thangavel, P.; Jeong, H.Y.; Kim, K.S. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nature Sust. 2020, 3, 556–563. [Google Scholar] [CrossRef]
- Harris, D.; Budhi, S.; She, Y.; Henry, J.; Leonard, B.M. Biomass derived metal carbide catalysts formed using a salt flux synthesis. Mater. Res. Express 2019, 6, 115519. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Y.; Wang, H. Astridia velutina-like S, N-codoped hierarchical porous carbon from silk cocoon for superior oxygen reduction reaction. RSC Adv. 2016, 6, 73560–73565. [Google Scholar] [CrossRef]
- Fu, P.; Zhou, L.; Sun, L.; Huang, B.; Yuan, Y. Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv. 2017, 7, 13383–13389. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, H.; Liu, X.; Zhang, J.; Peng, T.; Yang, J.; Huang, Y.; Mu, S. Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. J. Mater. Chem. A 2016, 4, 15870–15879. [Google Scholar] [CrossRef]
- Borghei, M.; Laocharoen, N.; Kibena-Põldsepp, E.; Johansson, L.S.; Campbell, J.; Kauppinen, E.; Tammeveski, K.; Rojas, O.J. Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction. Appl. Catal. B 2017, 204, 394–402. [Google Scholar] [CrossRef]
- Oh, J.; Park, S.; Jang, D.; Shin, Y.; Lim, D.; Park, S. Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction reactions. Carbon 2019, 145, 481–487. [Google Scholar] [CrossRef]
- Tang, Z.; Pei, Z.; Wang, Z.; Li, H.; Zeng, J.; Ruan, Z.; Huang, Y.; Zhu, M.; Xue, Q.; Yu, J.; et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 2018, 130, 532–538. [Google Scholar] [CrossRef]
- Lei, X.; Wang, M.; Lai, Y.; Hu, L.; Wang, H.; Fang, Z.; Li, J.; Fang, J. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. J. Power Sources 2017, 365, 76–82. [Google Scholar] [CrossRef]
- Srinu, A.; Peera, S.G.; Parthiban, V.; Bhuvaneshwari, B.; Sahu, A.K. Heteroatom Engineering and Co-Doping of N and P to Porous Carbon Derived from Spent Coffee Grounds as an Efficient Electrocatalyst for Oxygen Reduction Reactions in Alkaline Medium. ChemistrySelect 2018, 3, 690–702. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Zhao, Y.; Amiinu, I.S.; Zhou, H.; Liu, X.; Tang, Y.; Mu, S. Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl. Catal. B 2017, 211, 148–156. [Google Scholar] [CrossRef]
- Manasa, P.; Sambasivam, S.; Ean, F. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review. J. Energy Storage 2022, 54, 105290. [Google Scholar] [CrossRef]
Biomass | Preparation Method | Oil Feedstock | Biodiesel Synthesis Conditions | Biodiesel Yield | SA *, m2/g | Reusability | Reference |
---|---|---|---|---|---|---|---|
C. inophyllum seeds | Carbonization for 5 h at 400 °C, followed by sulfonation by H2SO4 (98 wt.%) at 150 °C. | C. inophyllum Oil | Oil/methanol ratio 1:30 mol, 0.3 g of catalyst, 150 °C, 2 h. | 36.4 | 3.4 | 80% of initial activity at 2nd cycle | [23] |
Starch | Pyrolysis for 5 h at 400 °C, followed by sulfonation by H2SO4 (98 wt.%) at 150 °C. | C. inophyllum Oil | Oil/methanol ratio 1:30 mol, 7.5 wt.% of catalyst, 180 °C, 5 h. | 81.0 | 0.9 | 80% of initial activity at 4th cycle | [24] |
Glucose | Carbonization for 15 h at 400 °C, followed by sulfonation by H2SO4 (98 wt.%) at 150 °C. | Oleic acid | Oleic acid/methanol ratio 1:50 mol, 5 wt.% of catalyst, 80 °C, 5 h. | 95.0 | 4.1 | 93% of initial activity at 50th cycle | [19] |
Starch | Pyrolysis for 3 h at 400 °C, followed by sulfonation by H2SO4 (98 wt.%) at 150 °C. | Waste oil | Oil/methanol ratio 1:30 mol, 12 wt.% of catalyst, 80 °C, 15 h. | 92.0 | 7.2 | 93% of initial activity at 50th cycle | [25] |
Lignin | Pyrolysis for 1 h at 400 °C, followed by sulfonation by H2SO4 (98 wt.%) at 150 °C. | Acidified soybean soapstock | Oil/methanol ratio 1:7 mol, 5 wt.% of catalyst, 70 °C, 5 h. | 96.0 | 4.7 | Over 90% of initial activity at 3rd cycle | [26] |
Rice husk | Fast pyrolysis at 510 °C for 4 s, followed by sulfonation by H2SO4 (98 wt.%) at 80 °C. | Waste oil | Oil/methanol ratio 1:30 mol, 10 wt.% of catalyst, 80 °C, 15 h. | 90.0 | 4.0 | - | [27] |
Mesoporous starch | Carbonization for 5 h at 400 °C, followed by sulfonation by H2SO4 (99 wt.%) at 80 °C. | Waste oil | Oil/methanol ratio 1:3 vol., 10 wt.% of catalyst, 80 °C, 18 h. | 98.0 | - | 78% of initial activity at 4th cycle | [28] |
Cotton stalk | Carbonization for 3 h at 450 °C, followed by sulfonation by H2SO4 (98 wt.%) at 80 °C. | Madhuca indica oil | Oil/methanol ratio 1:18 mol, 5 wt.% of catalyst, 60 °C, 5 h. | 89.2 | 92.0 | 90% of initial activity at 7th cycle | [29] |
Waste banana peel | Treatment by 30 wt.% H3PO4, carbonization for 3 h at 600 °C, and then sulfonation by H2SO4 (98 wt.%) at 80 °C. | Oleic acid | Oleic acid/methyl acetate ratio 1:50 mol, 12 wt.% of catalyst, 60 °C, 8 h. | 52.3 | - | 82% of initial activity at 5th cycle | [30] |
Waste cork | Pyrolysis for 2 h at 600 °C, followed by sulfonation by H2SO4 (98 wt.%) at 80 °C. | Waste oil | Oil/methanol ratio 1:25 mol, 1.5 wt.% of catalyst, 65 °C, 6 h. | 98.0 | - | 80% of initial activity at 5th cycle | [31] |
Sugarcane bagasse | Treatment by H3PO4 (1:1), calcination for 2 h at 400 °C, and then sulfonation by ClSO3H at 300 °C. | Palm fatty acid distillate (PFAD) | PFAD/methanol ratio 1:10 mol, 2 wt.% of catalyst, 60 °C, 1.5 h. | 98.6 | 300.0 | 90% of initial activity at 6th cycle | [32] |
Biomass | Preparation Method | Oil Feedstock | Biodiesel Synthesis Conditions | Biodiesel Yield | SA *, m2/g | Reusability | Reference |
---|---|---|---|---|---|---|---|
Red banana peduncle | Calcination for 4 h at 700 °C. | Ceiba pentandra oil | Oil/methanol ratio 1:12 mol, 2.5 wt.% of catalyst, 65 °C, 2 h. | 98.7 | 46.0 | 90% of initial activity at 3rd cycle | [35] |
Banana peels | Calcination for 4 h at 700 °C. | Bauhinia monandra seed oil | Oil/methanol ratio 1:7.6 mol, 2.75 wt.% of catalyst, 65 °C, 70 min. | 93.9 | 4.4 | - | [36] |
Coconut husk ash | Calcination for 1 h at 500 °C. | Jatropha oil | Oil/methanol ratio 1:12 mol, 7 wt.% of catalyst, 45 °C, 30 min. | 90.0 | - | - | [37] |
Sugarcane bagasse | Treatment with 1M HCl, calcination for 4 h at 700 °C, treatment with 1 M NaOH, and carbonization at 300 °C for 1 h. | Waste oil | Oil/methanol ratio 1:2 vol., 10 wt.% of catalyst, 65 °C, 2 h. | 99.0 | - | - | [38] |
Waste date seeds | Carbonization for 4 h at 450 °C, followed by impregnation by 1 M KOH and drying at room temperature for 48 h. | Waste oil | Oil/methanol ratio 1:10 mol, 3 wt.% of catalyst, 65 °C, 90 min. | 93.0 | 260 | - | [39] |
Empty fruit bunch | HTC for 3 h at 250 °C, followed by impregnation by K2CO3 and Cu(NO3)2. | Waste oil | Oil/methanol ratio 1:12 mol, 5 wt.% of catalyst, 70 °C, 2 h. | 97.1 | 4056.2 | 80% of initial activity at 5th cycle | [40] |
Coffee grounds | Carbonization for 3 h at 600 °C, followed by impregnation by 1 M KOH. | Waste oil | Oil/methanol ratio 1:9 mol, 5 wt.% of catalyst, 90 °C, 2 h. | 91.6 | - | 80% of initial activity at 5th cycle | [41] |
Raw coffee husks | Carbonization for 3 h at 700 °C, followed by impregnation by 1 M KOH. | Soybean oil | Oil/methanol ratio 1:10 mol, 10 wt.% of catalyst, 65 °C, 2 h. | 74.0 | - | 90% of initial activity at 2nd cycle | [42] |
Potato peel | Pyrolysis for 5 h at 500 °C, followed by calcination. | Waste oil | Oil/methanol ratio 1:9 mol, 3 wt.% of catalyst, 60 °C, 2 h. | 97.5 | - | 90% of initial activity at 5th cycle | [43] |
Hyacinth biomass | Carbonization for 8 h at 600 °C, followed by impregnation by K2CO3. | Palm oil | Oil/methanol ratio 1:12 mol, 15 wt.% of catalyst, 65 °C, 3 h. | 97.6 | - | - | [44] |
Waste passion fruit peel | Calcination for 1 h at 500 °C | Palm oil | Oil/methanol ratio 1:15 mol, 7 wt.% of catalyst, room temperature, 30 min | 95.4 | - | 78% of initial activity at 2nd cycle | [45] |
Carbon Source | Feedstock | Reaction Conditions | Product | Product Yield, wt.% | Number of Cycles without Loss in Activity | Reference |
---|---|---|---|---|---|---|
Sucrose | Cellulose | 110 °C, 4 h | Glucose | 74.5 | - | [46] |
Microcrystalline cellulose | Eucalyptus flakes | 120 °C, 3 h | Glucose | 76.0 | 3 | [47] |
Glucose | Cellulose | 110 °C, 4 h | Reducing sugars | 72.7 | 5 | [48] |
Sucrose | Cellulose | 120 °C, 4 h | Glucose | 59.0 | 4 | [49] |
Cellulose | Cellulose | 130 °C, 3 h | Reducing sugars | 68.9 | 3 | [50] |
Glucose | Fructose | 130 °C, 10 min | 5-hydroxymethylfurfural | 91.2 | 5 | [51] |
Cellulose | Fructose | 80 °C, 10 min | 5-hydroxymethylfurfural | 83.0 | 5 | [52] |
Cornstalk | Cornstalk | 170 °C, 30 min | Furfural | 68.2 | - | [53] |
Waste Camelia oleifera shells | Fructose | 100 °C, 24 h | 5-ethoxymethylfurfural | 25.0 | 4 | [54] |
Chestnut shell | Waste lignocellulose | 180 °C, 15 min | Furfural | 68.7 | 7 | [55] |
Carbon Source and Preparation Conditions | Active Phase | Substrate | Reaction Conditions | Product | Product Selectivity, wt.% | Number of Cycles without Loss in Activity | Reference |
---|---|---|---|---|---|---|---|
Hydrogenation | |||||||
Shrimp shell and pyrolysis at 600–800 °C for 2 h. | Core–shell Co@Co3O4 | Nitroarenes | 110 °C, 40 bar H2, 6 h | Amines | 99.0 | 3 | [57] |
Bamboo shoots and HTS at 850 °C. | Core–shell Co@Co3O4 | Nitroarenes | 110 °C, 5 MPa H2, 5 h | Amines | >90.0 | 6 | [58] |
Bamboo shoots and HTS at 850 °C. | Pd | Alkynes | Room temperature, 1 atm H2, 7 h | Alkenes | 95.0 | - | [58] |
Bamboo shoots and HTS at 850 °C. | Co/P | Nitroarenes | 170 °C, formic acid as H-donor, 7 h | Amines | >97.0 | - | [58] |
Cornstalks and carbonization at 300 °C for 3 h. | Pt | Cinnamaldehyde | 120 °C, 40 bar H2, 6 h | Hydrocinamyl alcohol | 95.0 | - | [59] |
Starch and HTC at 500 °C. | Ru | Levulinic acid | 150 °C, 5 MPa H2, 3 h | γ-valerolactone | 99.0 | 5 | [60] |
Sucrose and HTS with poly(ionic liquid). | Au-Pd | Phenylacetylene | Room temperature, 1 atm H2, 7 h | Styrene | 99.0 | - | [61] |
Other reactions | |||||||
Starch and gelation, followed by carbonization. | Fe3O4 | Benzyl alcohol | 130 °C, MW, 1 atm air | Benzaldehyde | 74.0 | 5 | [62] |
Tannic acid and gel formation, followed by carbonization at 900 °C. | Cu/Ni core-shell | Furfural | Methylfurane | 48.0 | 4 | [63] | |
Sugarcane bagasse and HTC at 600 °C. | Ni/NiO, MgO | CH4 + CO2 | 750 °C, 40 h | Synthesis gas | Methane conversion > 80% | 5 | [64] |
Shrimp shell and pyrolysis at 600–800 °C for 2 h. | Core–shell Co@Co3O4 | Arylhallides | 130 °C, 30 bar H2, 24 h | Cycloalkenes | >90.0 | 4 | [65] |
Bamboo shoots and HTC at 850 °C. | Pd | Alkynes | Room temperature, 1 atm H2, 2.5 h | Vinylsilanes | 96.0 | - | [58] |
Bamboo shoots and HTC at 850 °C. | Core–shell Co@Co3O4 | Nitroarenes | 110 °C, 5 MPa H2, 5 h | Structurally complex imines | 81.0 | - | [58] |
Starch and carbonization at 600 °C. | Pd | Iodobenzene + methyl acrylate | 130 °C, MW, 2 min, 0.1 g catalyst | Biaryles | 95.0 | 2 | [66] |
Starch and carbonization at 600 °C. | Pd | Benzeneboronic acid + bromobenzene | 130 °C, MW, 2 min, 0.1 g catalyst | Biaryles | 99.0 | 3 | [67] |
Chitosan and carbonization at 750 °C. | Au | Phenylboronic acid | 70 °C, 7 h, 0.01 g catalyst | biphenyl | 86.0 | - | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepacheva, A.A.; Markova, M.E.; Lugovoy, Y.V.; Kosivtsov, Y.Y.; Matveeva, V.G.; Sulman, M.G. Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review. Catalysts 2023, 13, 655. https://doi.org/10.3390/catal13040655
Stepacheva AA, Markova ME, Lugovoy YV, Kosivtsov YY, Matveeva VG, Sulman MG. Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review. Catalysts. 2023; 13(4):655. https://doi.org/10.3390/catal13040655
Chicago/Turabian StyleStepacheva, Antonina A., Mariia E. Markova, Yury V. Lugovoy, Yury Yu. Kosivtsov, Valentina G. Matveeva, and Mikhail G. Sulman. 2023. "Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review" Catalysts 13, no. 4: 655. https://doi.org/10.3390/catal13040655
APA StyleStepacheva, A. A., Markova, M. E., Lugovoy, Y. V., Kosivtsov, Y. Y., Matveeva, V. G., & Sulman, M. G. (2023). Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review. Catalysts, 13(4), 655. https://doi.org/10.3390/catal13040655