Improved Light Hydrocarbon, Furans, and BTEX Production from the Catalytic Assisted Pyrolysis of Agave salmiana Bagasse over Silica Mesoporous Catalysts
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. Biomass Characterization
2.3. Thermal Decomposition of ASB by Thermogravimetric Analysis (TGA)
2.4. Non-Catalytic Pyrolysis of Agave Salmiana Bagasse (ASB)
2.5. Use of Catalysts in Bio-Oil Upgrading
2.6. Catalytic Pyrolysis of Agave salmiana Bagasse with Aerosil
2.7. Catalytic Pyrolysis of Agave salmiana Bagasse with MCM-41
3. Materials and Methods
3.1. Biomass Preparation and Characterization
3.2. Catalyst Synthesis
3.3. Scanning Electron Microscopy (SEM), and High Resolution Transmition Electron Microscopy (HR-TEM)
3.4. Small Angle X-ray Scattering (SAXS), and Large X-ray Diffraction (XRD)
3.5. Nitrogen Physisorption
3.6. Fourier-Transform Infrared Spectroscopy
3.7. Conventional, and Catalytic Pyrolysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.H.P. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 2008, 35, 367–375. [Google Scholar] [CrossRef]
- Cushman, J.C.; Davis, S.C.; Yang, X.; Borland, A.M. Development and use of bioenergy feedstocks for semi-arid and arid lands. J. Exp. Bot. 2015, 66, 4177–4193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nava-Cruza, N.Y.; Medina-Moralesa, M.A.; Martineza, J.L.; Rodrigueza, R.; Aguilara, C.N. Agave biotechnology: An overview. Crit. Rev. Biotechnol. 2015, 35, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.C.; Dohleman, F.G.; Long, S.P. The global potential for Agave as a biofuel feedstock. GCB Bioenergy 2011, 3, 68–78. [Google Scholar] [CrossRef]
- Hoz-Zavala, M.E.E.; Nava-Diguero, P. Situación del Agave y sus residuos en Tamaulipas. Rev. Energías Renov. 2017, 1, 19–31. [Google Scholar]
- Chávez-Guerrero, L.; Hinojosa, M. Bagasse from the mezcal industry as an alternative renewable energy produced in arid lands. Fuel 2010, 89, 4049–4052. [Google Scholar] [CrossRef]
- Consejo Regulador del Tequila Informe Estadístico del Consejo Regulador del Tequila. 2021. Available online: https://www.crt.org.mx/EstadisticasCRTweb/. (accessed on 11 March 2022).
- Consejo Regulador del Mezcal Información Estadístico 2020. Available online: http://www.crm.org.mx/informes.php (accessed on 30 March 2021).
- Hoz-Zavala, M.E.E.; Nava-Diguero, P. Los residuos de agave como factor de corrosión del suelo donde se vierte. Rev. Desarro. Tecnol. 2017, 1, 11–24. [Google Scholar]
- Jiménez Muñoz, E.; Prieto García, F.; Prieto Méndez, J.; Acevedo Sandoval, O.A.; Rodríguez Laguna, R.; Otazo Sánchez, E.M. Utilization of Waste Agaves: Potential for Obtaining Cellulose Pulp. Cienc. Tec. Vitivinic. 2014, 29, 223–254. [Google Scholar]
- Pinos-Rodríguez, J.M.; Aguirre-Rivera, J.R.; García-López, J.C.; Rivera-Miranda, M.T.; González-Muñoz, S.; López-Aguirre, S.; Chávez-Villalobos, D. Use of “maguey” (Agave salmiana otto ex. salm-dick) as forage for ewes. J. Appl. Anim. Res. 2006, 30, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Parascanu, M.M.; Sandoval-Salas, F.; Soreanu, G.; Valverde, J.L.; Sanchez-Silva, L. Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renew. Sustain. Energy Rev. 2017, 71, 509–522. [Google Scholar] [CrossRef]
- Saucedo-Luna, J.; Castro-Montoya, A.J.; Rico, J.L.; Campos-García, J. Optimización de hidrólisis ácida de bagaso de Agave tequilana Weber. Rev. Mex. Ing. Qum. 2010, 9, 91–97. [Google Scholar]
- Liñán-Montes, A.; De La Parra-Arciniega, S.M.; Garza-González, M.T.; García-Reyes, R.B.; Soto-Regalado, E.; Cerino-Córdova, F.J. Characterization and thermal analysis of agave bagasse and malt spent grain. J. Therm. Anal. Calorim. 2014, 115, 751–758. [Google Scholar] [CrossRef]
- Bernardo, G.R.R.; Rene, R.M.J. Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J. Chem. Technol. Biotechnol. 2009, 84, 1533–1538. [Google Scholar] [CrossRef]
- Akhtar, J.; Saidina Amin, N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Energy Rev. 2012, 16, 5101–5109. [Google Scholar] [CrossRef]
- Torres, C.; Rostom, S.; de Lasa, H. An Eco-Friendly Fluidizable FexOy/CaO-γ-Al2O3 Catalyst for Tar Cracking during Biomass Gasification Cindy. Catalysts 2020, 10, 806. [Google Scholar] [CrossRef]
- Li, P.; Li, D.; Yang, H.; Wang, X.; Chen, H. Effects of Fe-, Zr-, and Co-Modified Zeolites and Pretreatments on Catalytic Upgrading of Biomass Fast Pyrolysis Vapors. Energy Fuels 2016, 30, 3004–3013. [Google Scholar] [CrossRef]
- Kelkar, S.; Saffron, C.M.; Andreassi, K.; Li, Z.; Murkute, A.; Miller, D.J.; Pinnavaia, T.J.; Kriegel, R.M. A survey of catalysts for aromatics from fast pyrolysis of biomass. Appl. Catal. B Environ. 2015, 174–175, 85–95. [Google Scholar] [CrossRef]
- Xue, Z.; Zhong, Z.; Zhang, B. Microwave-assisted catalytic fast pyrolysis of biomass for hydrocarbon production with physically mixed MCM-41 and ZSM-5. Catalysts 2020, 10, 685. [Google Scholar] [CrossRef]
- Ratnasari, D.K.; Bijl, A.; Yang, W.; Jönsson, P.G. Effect of H-ZSM-5 and Al-MCM-41 proportions in catalyst mixtures on the composition of bio-oil in ex-situ catalytic pyrolysis of lignocellulose biomass. Catalysts 2020, 10, 868. [Google Scholar] [CrossRef]
- De, S.; Dutta, S.; Saha, B. Critical design of heterogeneous catalysts for biomass valorization: Current thrust and emerging prospects. Catal. Sci. Technol. 2016, 6, 7364–7385. [Google Scholar] [CrossRef] [Green Version]
- Diez, A.S.; Alvarez, M.; Volpe, M.A. Metal-modified mesoporous silicate (MCM-41) material: Preparation, characterization and applications as an adsorbent. J. Braz. Chem. Soc. 2015, 26, 1542–1550. [Google Scholar] [CrossRef]
- Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005, 77, 1–45. [Google Scholar] [CrossRef]
- Meziani, M.J.; Zajac, J.; Jones, D.J.; Partyka, S.; Rozière, J.; Auroux, A. Number and strength of surface acidic sites on porous aluminosilicates of the MCM-41 type inferred from a combined microcalorimetric and adsorption study. Langmuir 2000, 16, 2262–2268. [Google Scholar] [CrossRef]
- Martín-Aranda, R.M.; Čejka, J. Recent advances in catalysis over mesoporous molecular sieves. Top. Catal. 2010, 53, 141–153. [Google Scholar] [CrossRef]
- Carrott, M.M.L.R.; Este, A.J.; Carrott, P.J.M.; Unger, K.K. Evaluation of the Stability of Pure Silica MCM-41 toward Water Vapor. Langmuir 1999, 15, 8895–8901. [Google Scholar] [CrossRef]
- Hu, S.; Liu, D.; Li, L.; Borgna, A.; Yang, Y. A non-sodium synthesis of highly ordered V-MCM-41 and its catalytic application in isomerization. Catal. Lett. 2009, 129, 478–485. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, G.; Chen, Z.; Jiang, W.; Zhou, H. In-situ synthesis and characterization of V-MCM-41 for oxidative dehydrogenation of n-butane. Microporous Mesoporous Mater. 2016, 223, 261–267. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Amama, P.B.; Lim, S.; Ciuparu, D.; Yang, Y.; Pfefferle, L.; Haller, G.L. Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis. J. Phys. Chem. B 2005, 109, 2645–2656. [Google Scholar] [CrossRef] [PubMed]
- Froba, M.; Thommes, M.; Ko, R. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl. Surf. Sci. 2002, 196, 239–249. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Sayari, A. Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements. Langmuir 2002, 13, 6267–6273. [Google Scholar] [CrossRef]
- Chakraborty, B.; Viswanathan, B. Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption. Catal. Today 1999, 49, 253–260. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Zhou, X.; Li, W.; Mabon, R.; Broadbelt, L.J. A Critical Review on Hemicellulose Pyrolysis. Energy Technol. 2017, 5, 216. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.K.; Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 2009, 100, 6496–6504. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hu, J.; Zhang, H.; Xiao, R. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel 2016, 182, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Monteil-Rivera, F.; Phuong, M.; Ye, M.; Halasz, A.; Hawari, J. Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind. Crops Prod. 2013, 41, 356–364. [Google Scholar] [CrossRef]
- Sanchez-Silva, L.; López-González, D.; Villaseñor, J.; Sánchez, P.; Valverde, J.L. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour. Technol. 2012, 109, 163–172. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S.; Luo, K.H.; Wang, S.R.; Fang, M.X. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour. Technol. 2010, 101, 6136–6146. [Google Scholar] [CrossRef]
- Wang, S.; Wang, K.; Liu, Q.; Gu, Y.; Luo, Z.; Cen, K.; Fransson, T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 2009, 27, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Jin, W.; Hu, J.; Xiao, R.; Luo, K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renew. Sustain. Energy Rev. 2015, 51, 761–774. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Hu, J.; Zhang, H.; Xiao, R. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 2016, 90, 209–217. [Google Scholar] [CrossRef]
- Collard, F.X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Acree, W.E.; Chickos, J.J.S. Mass pectra. In NIST Chemistry WebBook Standar Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standars and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Werner, K.; Pommer, L.; Broström, M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 2014, 110, 130–137. [Google Scholar] [CrossRef]
- Wang, Z.; McDonald, A.G.; Westerhof, R.J.M.; Kersten, S.R.A.; Cuba-Torres, C.M.; Ha, S.; Pecha, B.; Garcia-Perez, M. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J. Anal. Appl. Pyrolysis 2013, 100, 56–66. [Google Scholar] [CrossRef]
- Kim, U.; Hyun, S.; Wada, M. Thermal decomposition of native cellulose: In fluence on crystallite size. Polym. Degrad. Stab. 2010, 95, 778–781. [Google Scholar] [CrossRef]
- Degroot, W.F.; Pan, W.P.; Rahman, M.D.; Richards, G.N. First chemical events in pyrolysis of wood. J. Anal. Appl. Pyrolysis 1988, 13, 221–231. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Poornima Devi, T.; Sivashanmugam, S.; Kavitha, S.; Yukesh Kannah, R.; Varjani, S.; AdishKumar, S.; Kumar, G.; Rajesh Banu, J. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere 2022, 286, 131824. [Google Scholar] [CrossRef]
- Boot, M.; Frijters, P.; Luijten, C.; Somers, B.; Baert, R.; Donkerbroek, A.; Klein-Douwel, R.J.H.; Dam, N. Cyclic oxygenates: A new class of second-generation biofuels for diesel engines? Energy Fuels 2009, 23, 1808–1817. [Google Scholar] [CrossRef]
- Nimmanwudipong, T.; Runnebaum, R.C.; Block, D.E.; Gates, B.C. Catalytic reactions of guaiacol: Reaction network and evidence of oxygen removal in reactions with hydrogen. Catal. Lett. 2011, 141, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Azeez, A.M.; Meier, D.; Odermatt, J. Temperature dependence of fast pyrolysis volatile products from European and African biomasses. J. Anal. Appl. Pyrolysis 2011, 90, 81–92. [Google Scholar] [CrossRef]
- Papari, S.; Hawboldt, K. A review on condensing system for biomass pyrolysis process. Fuel Process. Technol. 2018, 180, 1–13. [Google Scholar] [CrossRef]
- Barnette, A.L.; Asay, D.B.; Janik, M.J.; Kim, S.H. Adsorption isotherm and orientation of alcohols on hydrophilic SiO2 under ambient conditions. J. Phys. Chem. C 2009, 113, 10632–10641. [Google Scholar] [CrossRef]
- Güllü, D.; Demirbaş, A. Biomass to methanol via pyrolysis process. Energy Convers. Manag. 2001, 42, 1349–1356. [Google Scholar] [CrossRef]
- Shafizadeh, F. Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis 1982, 3, 283–305. [Google Scholar] [CrossRef]
- Samolada, M.C.; Papafotica, A.; Vasalos, I.A. Catalyst Evaluation for Catalytic Biomass Pyrolysis. Energy Fuels 2000, 14, 1161–1167. [Google Scholar] [CrossRef]
- Vispute, T.P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 2010, 330, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.J.; Milne, T.A. An American Chemical Society Journal. Energy Fuels 1987, 1, 123–137. [Google Scholar] [CrossRef]
- Conner, W.C.; Weist, E.L.; Ito, T.; Fraissard, J. Characterization of the porous structure of agglomerated microspheres by129Xe NMR spectroscopy. J. Phys. Chem. 1989, 93, 4138–4142. [Google Scholar] [CrossRef]
- Niu, X.; Song, Y.; Xie, S.; Liu, S.; Wang, Q.; Xu, L. Synthesis and catalytic reactivity of MCM-22/ZSM-35 composites for olefin aromatization. Catal. Lett. 2005, 103, 211–218. [Google Scholar] [CrossRef]
- Kumar, N.; Lindfors, L.E. Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane. Appl. Catal. A Gen. 1996, 147, 175–187. [Google Scholar] [CrossRef]
- Corma, A.; Martínez-Soria, V.; Schnoeveld, E. Alkylation of benzene with short-chain olefins over MCM-22 zeolite: Catalytic behaviour and kinetic mechanism. J. Catal. 2000, 192, 163–173. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; NREL/TP-510-42622; NREL, Laboratory Analytical Procedure (LAP): Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; NREL/TP-510-42621; NREL, Laboratory Analytical Procedure (LAP): Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.O.; Scarlata, C.; Sluiter, J.; Templeton, D.; Energy, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL/TP-510-42618; NREL, Laboratory Analytical Procedure (LAP): Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; NREL/TP-510-42619; NREL, Laboratory Analytical Procedure (LAP): Golden, CO, USA, 2008. [Google Scholar]
- Handy, B.E.; Sharma, S.B.; Spiewak, B.E.; Dumesic, J.A. A Tian-Calvet heat-flux microcalorimeter for measurement of differential heats of adsorption. Meas. Sci. Technol. 1993, 4, 1350–1356. [Google Scholar] [CrossRef]
Catalyst | BET Surface Area (m2/g) | Pore Diameter (nm) | Mesopore Total Volume (cm3/g) |
---|---|---|---|
MCM-41 | 1290 | 3.4 | 0.91 |
wt% | |
---|---|
Moisture | 5.7 |
Total solids | 94.3 |
Ash | 2.2 |
wt% | |
---|---|
Extractives | 3.6 |
Acid insoluble lignin | 9.9 |
Glucose | 66.5 |
Xylose | 20.0 |
Total | 100 |
Compound | Formula | O/C Ratio | Tbp, °C |
---|---|---|---|
Bio-gas components | |||
Hydrogen | H2 | - | −252.9 |
Carbon monoxide | CO | 1 | −191.5 |
Methane | CH4 | 0 | −161.6 |
Ethene | C2H4 | 0 | −103.7 |
Ethane | C2H6 | 0 | −89 |
Carbon dioxide | CO2 | 2 | −78.5 |
1,3-Butadiene | C4H6 | 0 | −4.4 |
2-Butene | C4H8 | 0 | 1 |
Furan | C4H4O | 1/4 | 31 |
Pentane | C5H12 | 0 | 36.1 |
Cyclopentadiene | C5H6 | 0 | 40.8 |
Bio-oil components | |||
Propanone | C3H6O | 1/3 | 56 |
2-Methylfuran | C5H6O | 1/5 | 63 |
Methanol | CH3OH | 1 | 65 |
Benzene | C6H6 | 0 | 80 |
Water | H2O | - | 100 |
2-Pentanone | C5H10O | 1/5 | 101 |
Toluene | C7H8 | 0 | 111 |
Acetic acid | CH3COOH | 1 | 118 |
2-Methylbutanol | C5H12O | 1/5 | 129 |
Xylenes (o, m, p)/Ethylbenzene | C8H10 | 0 | 136–144 |
Cyclohexanone | C6H10O | 1/6 | 155 |
Furfural | C5H4O2 | 2/5 | 162 |
Furanmethanol | C5H6O2 | 2/5 | 170 |
Phenol | C6H6O | 1/6 | 182 |
5-Methylfurfural | C6H6O2 | 1/3 | 187 |
Benzyl alcohol | C7H8O | 1/7 | 205 |
2(5H)-Furanone | C4H4O2 | 1/2 | 212 |
Compound | Aerosil-380, % | MCM-41, % |
---|---|---|
Acetic acid | −50.7 | −22.1 |
Methanol | −16.9 | −2.9 |
2(5H)-Furanone | −32.9 | −0.4 |
CO2 | 1.4 | 3.5 |
Ethene | 2.5 | 8.9 |
Methane | 1.9 | 10.4 |
1,3-Butadiene | −14.2 | 15.6 |
Furfural | −13.8 | 16.6 |
Toluene | −1.0 | 17.3 |
Benzene | 8.4 | 19.6 |
Furan | −16.9 | 23.7 |
Phenol | −6.8 | 27.3 |
Xylenes/Ethylbenzene | −2.2 | 27.4 |
H2 | 10.1 | 28.7 |
Cyclohexanone | −15.9 | 37.9 |
2-Methylfuran | −4.6 | 40.4 |
2-Methylbutanol | −2.0 | 42.5 |
2-butene | 6.3 | 44.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Martínez, L.; González-Falcón, C.I.; Reyes-Hernández, J.; Handy, B.E.; Cárdenas-Galindo, M.-G. Improved Light Hydrocarbon, Furans, and BTEX Production from the Catalytic Assisted Pyrolysis of Agave salmiana Bagasse over Silica Mesoporous Catalysts. Catalysts 2023, 13, 548. https://doi.org/10.3390/catal13030548
Santiago-Martínez L, González-Falcón CI, Reyes-Hernández J, Handy BE, Cárdenas-Galindo M-G. Improved Light Hydrocarbon, Furans, and BTEX Production from the Catalytic Assisted Pyrolysis of Agave salmiana Bagasse over Silica Mesoporous Catalysts. Catalysts. 2023; 13(3):548. https://doi.org/10.3390/catal13030548
Chicago/Turabian StyleSantiago-Martínez, Leoncio, César Irán González-Falcón, Jaime Reyes-Hernández, Brent E. Handy, and María-Guadalupe Cárdenas-Galindo. 2023. "Improved Light Hydrocarbon, Furans, and BTEX Production from the Catalytic Assisted Pyrolysis of Agave salmiana Bagasse over Silica Mesoporous Catalysts" Catalysts 13, no. 3: 548. https://doi.org/10.3390/catal13030548
APA StyleSantiago-Martínez, L., González-Falcón, C. I., Reyes-Hernández, J., Handy, B. E., & Cárdenas-Galindo, M. -G. (2023). Improved Light Hydrocarbon, Furans, and BTEX Production from the Catalytic Assisted Pyrolysis of Agave salmiana Bagasse over Silica Mesoporous Catalysts. Catalysts, 13(3), 548. https://doi.org/10.3390/catal13030548