Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches
Abstract
:1. Introduction
2. Photocatalyzed Synthesis of Sulfides by Direct Sulfenylation of C–C π–Bonds
2.1. Using Thiols as Substrate
2.2. Using Thiosulfonate and Thiocyanate as Substrates
3. Photocatalyzed Synthesis of Sulfones
3.1. Using Pre-Installed Sulfones Substrates for the Generation of Sulfonyl Radical
3.2. Using SO2 for the In Situ Formation of Sulfonyl Radical Species
4. Photocatalyzed Csp2–N Bond Activation for the Formation of Csp2–S Bonds
5. Photocatalyzed Synthesis of Thioester, Thioether and Thioacetal
6. Photocatalyzed Synthesis of Organoselenium Compounds
6.1. Using Diorganyl Diselenides as Selenium Source
6.2. Using [Me4N][SeCF3] as Selenium Source
6.3. Using KSeCN as Selenium Source
6.4. Using Selenosulfonates as Selenium Source
7. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- UNESCO. UNESCO Science Report: Toward 2030; UNESCO Publishing: Paris, France, 2015; ISBN 97892310011291. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development, A/RES/70/01. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 21 January 2023).
- United Nations Environment Programme. Healthy Environment, Healthy People, Thematic Report, Ministerial Policy Review Session, Second Session of the United Nations Environmental Assembly. 2016. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/17602/K1602727%20INF%205%20Eng.pdf?sequence=1&isAllowed=y (accessed on 21 January 2023).
- United Nations Environment Programme. Towards a Pollution-Free Planet. 2017. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/21800/UNEA_towardspollution_long%20version_Web.pdf?isAllowed=y&sequence=1 (accessed on 25 January 2023).
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Kümmerer, K.; Clark, J. Green and Sustainable Chemistry; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Anastas, P.T.; Zimmerman, J.B. The United Nations sustainability goals: How can sustainable chemistry contribute? Curr. Opin. Green Sustain. Chem. 2018, 13, 150–153. [Google Scholar] [CrossRef]
- Anastas, P.T.; Zimmerman, J.B. The periodic table of the elements of green and sustainable chemistry. Green Chem. 2019, 21, 6545–6566. [Google Scholar] [CrossRef]
- Horváth, I.T. Introduction: Sustainable Chemistry. Chem. Rev. 2018, 118, 369–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldon, R.A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [Green Version]
- Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898–6926. [Google Scholar] [CrossRef]
- Twilton, J.; Le, C.; Zhang, P.; Shaw, M.H.; Evans, R.W.; MacMillan, D.W.C. The Merger of Transition Metal and Photocatalysis. Nat. Chem. Rev. 2017, 1, 0052. [Google Scholar] [CrossRef]
- Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Makes a Difference in Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072. [Google Scholar] [CrossRef]
- Amos, S.G.E.; Garreau, M.; Buzzetti, L.; Jerome, W. Photocatalysis with Organic Dyes: Facile Access to Reactive Intermediates for Synthesis. Beilstein J. Org. Chem. 2020, 16, 1163–1187. [Google Scholar] [CrossRef]
- Strieth-Kalthoff, F.; James, M.J.; Teders, M.; Pitzer, L.; Glorius, F. Energy Transfer Catalysis Mediated by Visible Light: Principles, Applications, Directons. Chem. Soc. Rev. 2018, 47, 7190–7202. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sharma, A. Recent Advances in Photocatalytic Manipulations of Rose Bengal in Organic Synthesis. Org. Biomol. Chem. 2019, 17, 4384–4405. [Google Scholar] [CrossRef]
- Scott, K.A.; Njardarson, J.T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. 2018, 376, 5. [Google Scholar] [CrossRef]
- Mustafa, M.; Winum, J.-Y. The Importance of Sulfur-Containing Motifs in Drug Design and Discovery. Expert Opin. Drug Discov. 2022, 17, 501–512. [Google Scholar] [CrossRef]
- Tilby, M.J.; Willis, M.C. How Do We Address Neglected Sulfur Pharmacophores in Drug Discovery? Expert Opin. Drug Discov. 2021, 16, 1227–1231. [Google Scholar] [CrossRef]
- Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.-F.; Qin, H.-L. Pharmaceutical and Medicinal Significance of Sulfur (SVI)-Containing Motifs for Drugs Discovery: A Critical Review. Eur. J. Med. Chem. 2019, 162, 679–734. [Google Scholar] [CrossRef]
- Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontier on Organoselenium Compounds; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Jain, V.L.; Priyadarsini, K.I. (Eds.) Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Royal Society of Chemistry: Croydon, UK, 2017. [Google Scholar]
- Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem. Rev. 2004, 104, 6255–6285. [Google Scholar] [CrossRef]
- Mugesh, G.; Singh, H.B. Synthetic Organoselenium Compounds as Antioxidants: Glutathione Peroxidase Activity. Chem. Soc. Rev. 2000, 29, 347–357. [Google Scholar] [CrossRef]
- Bhowmick, D.; Mugesh, G. Insights into the Catalytic Mechanism of Synthetic Glutathione Peroxidase Mimetics. Org. Biomol. Chem. 2015, 13, 10262–10272. [Google Scholar] [CrossRef]
- Wimmer, A.; König, B. Photocatalytic Formation of Carbon-Sulfur Bonds. Beilstein J. Org. Chem. 2018, 14, 54–83. [Google Scholar] [CrossRef]
- Guo, W.; Tao, K.; Tan, W.; Zhao, M.; Zheng, L.; Fan, X. Recent Advances in Photocatalytic C-S/P-S Bond Formation via the Generation of Sulfur Centered Radicals and Functionalization. Org. Chem. Front. 2019, 6, 2048–2066. [Google Scholar] [CrossRef]
- Srivastava, V.; Singh, P.K.; Srivastava, A.; Singh, P.P. Recent Application of Visible-Light Induced Radicals in C-S Bond Formation. RSC Adv. 2020, 10, 20046–20056. [Google Scholar] [CrossRef] [PubMed]
- Azzi, E.; Lanfranco, A.; Moro, R.; Deagostino, A.; Renzi, P. Visible Light as the Key for the Formation of Carbon-Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. Synthesis 2021, 53, 3440–3468. [Google Scholar] [CrossRef]
- Singla, D.; Luxami, V.; Paul, K. Eosin Y Mediated Photo-catalytic C-H Functionalization: C-C and C-S Bond Formation. Org. Chem. Front. 2023, 10, 237–266. [Google Scholar] [CrossRef]
- Rafique, J.; Rampon, D.S.; Azeredo, J.B.; Coelho, F.L.; Schneider, P.H.; Braga, A.L. Light-Mediated Seleno-Functionalization of Organic Molecules: Recent Advances. Chem. Rec. 2021, 21, 2739–2761. [Google Scholar] [CrossRef]
- Penteado, F.; Gomes, C.S.; Molzon, L.I.; Perin, G.; Silveira, C.C.; Lenardão, E.J. Photocatalytic Synthesis of 3-Sulfanyl- and 1,3-Bis(sulfanyl)indolizines Mediated by Visible Light. Eur. J. Org. Chem. 2020, 2020, 2110–2115. [Google Scholar] [CrossRef]
- Bartz, R.H.; Peglow, T.J.; Penteado, F.; Jacob, R.G.; Lenardão, E.J.; Perin, G. Visible Light-Promoted Synthesis of 2-Aryl-(3-organoselanyl)thieno [2,3-b]pyridines. Green Chem. Lett. Rev. 2022, 15, 373–382. [Google Scholar] [CrossRef]
- Perin, G.; Peglow, T.J.; Penteado, F.; Nobre, P.C.; Silva, K.B.; Stach, G.; Barcellos, T.; Lenardão, E.J.; Roehrs, J.A. UVA Light-promoted Catalyst-free Cyclization of Vinyl Selenides: Green and Efficient Synthesis of C3-Unsubstituted 2-Selanyl Benzochalcogenophenes. Chem. Asian. J. 2022, 17, e202101394. [Google Scholar] [CrossRef]
- Abenante, L.; Quadros, G.T.; Perin, G.; Santi, C.; Penteado, F.; Lenardão, E.J. Visible-Light-Mediated Photocatalytic Synthesis of 2-Substituted Oxazole-5-Carbaldehydes Promoted by Benzeneseleninic Acid. Eur. J. Org. Chem. 2022, 2022, e202200641. [Google Scholar] [CrossRef]
- Wang, N.; Saidhareddy, P.; Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 2020, 37, 246–275. [Google Scholar] [CrossRef]
- Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486–508. [Google Scholar] [CrossRef]
- Xie, L.-Y.; Chen, Y.-L.; Qin, L.; Wen, Y.; Xie, J.-W.; Tan, J.-X.; Huang, Y.; Cao, Z.; He, W.-M. Visible-light-promoted direct C-H/S-H crosscoupling of quinoxalin-2(1H)-ones with thiols leading to 3-sulfenylated quinoxalin-2(1H)-ones in air. Org. Chem. Front. 2019, 6, 3950–3955. [Google Scholar] [CrossRef]
- Huang, Q.; Peng, X.; Li, H.; He, H.; Liu, L. Visible-light-induced, graphene oxide-promoted C3-chalcogenylation of indoles strategy under transition-metal-free conditions. Molecules 2022, 27, 772. [Google Scholar] [CrossRef]
- Nagar, B.; Dhar, B.B. Visible light-mediated thiolation of substituted 1,4-naphthoquinones using eosin Y as a photoredox catalyst. J. Org. Chem. 2022, 87, 3195–3201. [Google Scholar] [CrossRef]
- Nair, A.M.; Kumar, S.; Volla, C.M.R. Visible light mediated sulfenylation-annulation cascade of alkyne tethered cyclohexadienones. Adv. Synth. Catal. 2019, 361, 4983–4988. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Zhang, H.-R.; Zhou, L.; Fang, J.-D.; Liu, X.-Y. Photoredox-catalyzed sulfenylation/cyclization of N-aryl-Ntosylpropargylamine with disulfide: A concise route to 3-phenylthioquinoline. Tetrahedron 2019, 75, 2893–2899. [Google Scholar] [CrossRef]
- Zhang, N.; Zuo, H.; Xu, C.; Pan, J.; Sun, J.; Guo, C. Visible light induced the high-efficiency spirocyclization reaction of propynamide and thiophenols via recyclable catalyst Pd/ZrO2. Chin. Chem. Lett. 2020, 31, 337–340. [Google Scholar] [CrossRef]
- Ho, H.E.; Pagano, A.; Rossi-Ashton, J.A.; Donald, J.R.; Epton, R.G.; Churchill, J.C.; James, M.J.; O’Brien, P.; Taylor, R.J.K.; Unsworth, W.P. Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indoletethered ynones. Chem. Sci. 2020, 11, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yan, Y.; Zhang, N.; Mo, Z.; Xu, Y.; Chen, Y. Visible-light-induced cyclization/aromatization of 2-vinyloxy arylalkynes: Synthesis of thio-substituted dibenzofuran derivatives. Org. Lett. 2021, 23, 376–381. [Google Scholar] [CrossRef]
- Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Recent advances in the chemistry of organic thiocyanates. Chem. Soc. Rev. 2016, 45, 494–505. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Chen, J.; He, Y.-H.; Guan, Z. Visible-light-mediated additive-free decarboxylative ketonization reaction of acrylic acids: An access to α-thiocyanate ketones. J. Org. Chem. 2021, 86, 3741–3749. [Google Scholar] [CrossRef]
- Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patai, S.; Rappoport, Z.; Stirling, C.J.M. The Chemistry of Sulphones and Sulphoxides; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Liang, S.; Hofman, K.; Friedrich, M.; Keller, J.; Manolikakes, G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. ChemSusChem 2021, 14, 4878–4902. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.-W.; Liang, S.; Manolikake, G. Recent Advances in the Synthesis of Sulfones. Synthesis 2016, 48, 1939–1973. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.-Q.; Han, Q.-Q.; Yang, S.-H.; Song, J.-C.; Li, N.; Wang, Z.-L.; Xu, X.-M. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020, 5, 13103–13134. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, C.; Yi, L.; Yue, H.; Kancherla, R.; Rueping, M. Cascade cross-coupling of dienes: Photoredox and nickel dual catalysis. Angew. Chem. Int. Ed. 2019, 58, 2–10. [Google Scholar] [CrossRef]
- Wang, J.-J.; Yu, W. Hydrosulfonylation of Unactivated Alkenes by Visible Light Photoredox Catalysis. Org. Lett. 2019, 21, 9236–9240. [Google Scholar] [CrossRef]
- Zheng, Y.; You, Y.; Shen, Q.; Zhang, J.; Liu, L.; Duan, X.-H. Visible-Light-Induced Anti-Markovnikov Hydrosulfonation of Styrene Derivatives. Org. Chem. Front. 2020, 7, 2069–2074. [Google Scholar] [CrossRef]
- Xie, S.; Li, Y.; Liu, P.; Sun, P. Visible light-induced radical addition/annulation to construct phenylsulfonyl-functionalized dihydrobenzofurans involving an intramolecular 1,5-hydrogen atom transfer process. Org. Lett. 2020, 22, 8774–8779. [Google Scholar] [CrossRef]
- Yuan, J.-M.; Li, J.; Zhou, H.; Xu, J.; Zhu, F.; Liang, Q.; Liu, Z.; Huang, G.; Huang, J. Synthesis of 3-sulfonylquinolines by visible-light promoted metal free cascade cycloaddition involving N-propargylanilines and sodium sulfinates. New J. Chem. 2020, 44, 3189–3193. [Google Scholar] [CrossRef]
- Xu, S.; Kong, H.; Zhang, R. Visible-light-induced, UiO-67-Ru-catalyzed oxidative cross-coupling for constructing b-acetylamino acrylosulfones. Tetrahedron Lett. 2020, 61, 151629–151635. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Dahiya, A.; Das, B.; Behera, A.; Patel, B.K. Visible-light-mediated difunctionalization of alkynes: Synthesis of β-substituted vinylsulfones using O- and S-centered nucleophiles. J. Org. Chem. 2021, 86, 11968–11986. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Liu, R.; Ji, Z.; Li, Y.; Zhao, X.; Wei, W. Visible-light-initiated 4CzIPN catalyzed multi-component tandem reactions to assemble sulfonated quinoxalin-2(1H)-ones. Chin. Chem. Lett. 2022, 33, 1479–1482. [Google Scholar] [CrossRef]
- Qian, Z.-M.; Zuo, K.-L.; Guan, Z.; He, Y.-H. Visible-light-induced sequential sulfonylation/hydroxylation of allylacetamides leading to β-tert-hydroxy sulfones. Tetrahedron 2021, 83, 131999. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Zhang, Y.; Liu, Q.; Zhao, X.; Li, J.-S.; Luo, Z.; Wei, W. Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. Chin. Chem. Lett. 2020, 31, 67–70. [Google Scholar] [CrossRef]
- Liu, Q.; Mei, Y.; Wang, L.; Ma, Y.; Li, P. Visible-light-induced radical cascade cyclizations of 1,7-enynes with sulfinic acids: Direct access to sulfonated chromanes and sulfonated tetrahydroquinolines under metal-free conditions. Adv. Synth. Catal. 2020, 362, 5669–5680. [Google Scholar] [CrossRef]
- Li, G.-H.; Han, Q.-Q.; Sun, Y.-Y.; Chen, D.-M.; Wang, Z.-L.; Xu, X.-M.; Yu, X.-Y. Visible-light induced cascade radical cyclization of sulfinic acids and o-(allyloxy)arylaldehydes towards functionalized chroman-4-ones. Chin. Chem. Lett. 2020, 31, 3255–3258. [Google Scholar] [CrossRef]
- Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. Visible-Light-Mediated Regioselective Chlorosulfonylation of Alkenes and Alkynes: Introducing the Cu(II) Complex [Cu(dap)Cl2] to Photochemical ATRA Reactions. ACS Catal. 2019, 9, 1103–1109. [Google Scholar] [CrossRef]
- Hell, S.M.; Meyer, C.F.; Misale, A.; Sap, J.B.I.; Christensen, K.E.; Willis, M.C.; Trabanco, A.A.; Gouverneur, V. Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angew. Chem. Int. Ed. 2020, 59, 11620–11626. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Xi, H.; Jiao, W.; Huang, L.; Wang, L.; Wu, J. Difunctionalization of gem-Difluoroalkenes via Photoredox Catalysis: Synthesis of Diverse α,α-Difluoromethyl-β-alkoxysulfones. Org. Lett. 2022, 24, 720–725. [Google Scholar] [CrossRef]
- Wang, Q.-L.; Zhang, W.-Z.; Zhou, Q.; Zhou, C.-S.; Xiong, B.-Q.; Tang, K.-W.; Liu, Y. Visible-light-mediated difunctionalization of vinylcyclopropanes for the synthesis of 1-sulfonylmethyl-3,4-dihydronaphthalenes. Org. Biomol. Chem. 2019, 17, 7918–7926. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, S.; Gao, X.; Han, S.; Lin, J.; Zhao, Y. Photoredox-catalyzed cascade annulation of N-propargylindoles with sulfonyl chlorides: Access to 2-sulfonated 9H-pyrrolo[1,2-a]indoles. Org. Biomol. Chem. 2019, 17, 2873–2876. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, G.; Huang, H.-L.; Liu, J.; Tang, H.; Li, Y.; Hu, H.; He, S.; Gao, F. Visible-light-driven sulfonylation/cyclization to access sulfonylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. Chem. Asian J. 2021, 16, 2618–2621. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.-H.; Li, Q.; Chen, F.-Y.; Jiang, L.-L.; Xu, P.; Deng, X.-W.; Li, M.; Zou, G.-D.; Cao, X. Visible-light photoredox-catalyzed sulfonyl lactonization of alkenoic acids with sulfonyl chlorides for sulfonyl lactone synthesis. J. Org. Chem. 2021, 86, 11998–12007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Kuang, K.; Wu, M.; Wu, S.; Xia, Z.; Xu, Q.; Zhang, M. Visible-light-induced radical cascade cyclization of 1-(allyloxy)-2-(1-arylvinyl)benzenes with sulfonyl chlorides for the synthesis of sulfonated benzoxepines. Org. Chem. Front. 2021, 8, 4095–4100. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, F.; Yue, H.; Zhao, X.; Li, J.; Wei, W. Photocatalyst-Free Visible Light-Induced Synthesis of β-Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Adv. Synth. Catal. 2019, 361, 5277–5282. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Q.; Liu, F.; Yue, H.; Li, J.-S.; Wei, W. Visible-light-promoted aerobic oxidative synthesis of β-ketosulfones under photocatalyst-free conditions. Tetrahedron Lett. 2020, 61, 151335–151338. [Google Scholar] [CrossRef]
- Chen, J.; Allyson, Z.G.; Xin, J.-R.; Guan, Z.; He, Y.-H. Photo-Mediated Decarboxylative Ketonization of Atropic Acids with Sulfonyl Hydrazides: Direct Access to β-Ketosulfones. Adv. Synth. Catal. 2020, 362, 2045–2051. [Google Scholar] [CrossRef]
- Gadde, K.; Mampuys, P.; Guidetti, A.; Ching, H.Y.V.; Herrebout, W.A.; Doorslaer, S.V.; Tehrani, K.A.; Maes, B.U.W. Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis. ACS Catal. 2020, 10, 8765–8779. [Google Scholar] [CrossRef]
- Li, P.; Wang, G.-W. Visible-light-induced decarboxylative sulfonylation of cinnamic acids with sodium sulfinates by using Merrifield resin supported Rose Bengal as a catalyst. Org. Biomol. Chem. 2019, 17, 5578–5585. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Wang, Z.; Wang, L. Synthesis of Vinyl Sulfones through a Visible-Light-Induced Decarboxylative Sulfonylation of Cinnamic Acids with Disulfides. Asian J. Chem. 2019, 8, 1426–1435. [Google Scholar] [CrossRef]
- Chawla, R.; Jaiswal, S.; Dutta, P.K.; Yadav, L.D.S. Photocatalyst-free visible light driven synthesis of (E)-vinyl sulfones from cinnamic acids and arylazo sulfones. Tetrahedron Lett. 2020, 61, 151898. [Google Scholar] [CrossRef]
- Bisseret, P.; Blanchard, N. Taming sulfur dioxide: A breakthrough for its wide utilization in chemistry and biology. Org. Biomol. Chem. 2013, 11, 5393–5398. [Google Scholar] [CrossRef]
- Ye, S.; Qiu, G.; Wu, J. Inorganic sulfites as the sulfur dioxide surrogates in sulfonylation reactions. Chem. Commun. 2019, 55, 1013–1019. [Google Scholar] [CrossRef]
- Emmett, E.J.; Willis, M.C. The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry. Asian J. Org. Chem. 2015, 4, 602–611. [Google Scholar] [CrossRef]
- Hofman, K.; Liu, N.-W.; Manolikakes, G. Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of Sulfonyl-Containing Molecules. Chem. Eur. J. 2018, 24, 11852–11863. [Google Scholar] [CrossRef]
- Ye, S.; Li, X.; Xie, W.; Wu, J. Photoinduced Sulfonylation Reactions through the Insertion of Sulfur Dioxide. Eur. J. Org. Chem. 2020, 2020, 1274–1287. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.-L.; Chen, Z.; Zhou, Q.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. Visible-light promoted one-pot synthesis of sulfonated spiro[4,5]trienones from propiolamides, anilines and sulfur dioxide under transition metal-free conditions. Chem. Commun. 2019, 55, 12212–12215. [Google Scholar] [CrossRef]
- Yao, Y.; Yin, Z.; He, F.-S.; Qin, X.; Xie, W.; Wu, J. Photoinduced intramolecular carbosulfonylation of alkynes: Access to sulfone-containing dibenzazepines from sulfur dioxide. Chem. Commun. 2021, 57, 2883–2886. [Google Scholar] [CrossRef]
- Ye, S.; Zhou, K.; Rojsitthisak, P.; Wu, J. Metal-free insertion of sulfur dioxide with aryl iodides under ultraviolet irradiation: Direct access to sulfonated cyclic compounds. Org. Chem. Front. 2020, 7, 14–18. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Zhou, S.-F.; Cui, X. Photoredox-catalyzed synthesis of sulfonated oxazolines from N-allylamides through the insertion of sulfur dioxide. Org. Chem. Front. 2022, 9, 364–369. [Google Scholar] [CrossRef]
- He, F.-S.; Wu, Y.; Li, X.; Xia, H.; Wu, J. Photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide through semipinacol rearrangement. Org. Chem. Front. 2019, 6, 1873–1878. [Google Scholar] [CrossRef]
- Zong, Y.; Lang, Y.; Yang, M.; Li, X.; Fan, X.; Wu, J. Synthesis of β-Sulfonyl Amides through a Multicomponent Reaction with the Insertion of Sulfur Dioxide under Visible Light Irradiation. Org. Lett. 2019, 21, 1935–1938. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.M.; Kumar, S.; Halder, I.; Volla, C.M.R. Visible-light mediated sulfonylation of thiols via insertion of sulfur dioxide. Org. Biomol. Chem. 2019, 17, 5897–5901. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Zhang, B.; Han, J.; Peng, B.; Shan, Y.; Niu, T. Heterogeneous Carbon Nitrides Photocatalysis Multicomponent Hydrosulfonylation of Alkynes to Access β-Keto Sulfones with the Insertion of Sulfur Dioxide in Aerobic Aqueous Medium. Org. Lett. 2020, 22, 670–674. [Google Scholar] [CrossRef]
- Ye, S.; Li, X.; Xie, W.; Wu, J. A Three-Component Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide and Allylic Bromides under Visible Light Irradiation. Asian J. Chem. 2019, 8, 893–898. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Qiu, G.; Wu, J. Substituted Hantzsch esters as radical reservoirs with the insertion of sulfur dioxide under photoredox catalysis. Chem. Commun. 2019, 55, 2062–2065. [Google Scholar] [CrossRef]
- Ye, S.; Zheng, D.; Wu, J.; Qiu, G. Photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes. Chem. Commun. 2019, 55, 2214–2217. [Google Scholar] [CrossRef]
- Breton-Patient, C.; Naud-Martin, D.; Mahuteau-Betzer, F.; Piguel, S. Three-component C-H bond sulfonylation of imidazoheterocycles via visible-light organophotoredox catalysis. Eur. J. Chem. 2020, 2020, 6653–6660. [Google Scholar] [CrossRef]
- Cao, S.; Hong, W.; Ye, Z.; Gong, L. Photocatalytic three-component asymmetric sulfonylation via direct C(sp3)-H functionalization. Nat. Commun. 2021, 12, 2377. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Xie, W.; Ye, S.; Wu, J. Photoredox-Catalyzed Sulfonylation of O-Acyl Oximes via Iminyl Radicals with the Insertion of Sulfur Dioxide. Org. Lett. 2019, 21, 4950–4954. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.-L.; Chen, Z.; Li, H.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. Visible-light photoredox-catalyzed dual C-C bond cleavage: Synthesis of 2-cyanoalkylsulfonylated 3,4-dihydronaphthalenes through the insertion of sulfur dioxide. Chem. Commun. 2020, 56, 3011–3014. [Google Scholar] [CrossRef]
- Zhou, N.; Xia, Z.; Wu, S.; Kuang, K.; Xu, Q.; Zhang, M. Visible-Light-Induced Multicomponent Cascade Cycloaddition of N-Propargyl Aromatic Amines, Cyclobutanone Oxime Esters, and K2S2O5: Access to Cyanoalkylsulfonylated Quinolines. J. Org. Chem. 2021, 86, 15253–15262. [Google Scholar] [CrossRef]
- Teng, F.; Du, J.; Xun, C.; Zhu, M.; Lu, Z.; Jiang, H.; Chen, Y.; Lia, Y.; Gui, Q.-W. Photoinduced efficient synthesis of cyanoalkylsulfonylated oxindoles via sulfur dioxide insertion. Org. Biomol. Chem. 2021, 19, 8929–8933. [Google Scholar] [CrossRef]
- Lv, Y.; Luo, J.; Lin, M.; He, L.; Yue, H.; Liu, R.; Wei, W. Metal-Free Multi-Component Sulfur Dioxide Insertion Reaction Leading to Quinoxalin-2-One-Containing Vinyl Sulfones under Visible-Light Photoredox Catalysis. Adv. Synth. Catal. 2021, 363, 5122–5128. [Google Scholar] [CrossRef]
- He, F.-S.; Yao, Y.; Xie, W.; Wu, J. Photoredox-catalyzed sulfonylation of difluoroenoxysilanes with the insertion of sulfur dioxide. Chem. Commun. 2020, 56, 9469–9472. [Google Scholar] [CrossRef]
- Gong, X.; Yang, M.; Liu, J.-B.; He, F.-S.; Wu, J. Photoinduced synthesis of alkylalkynyl sulfones through a reaction of potassium alkyltrifluoroborates, sulfur dioxide, and alkynyl bromides. Org. Chem. Front. 2020, 7, 938–943. [Google Scholar] [CrossRef]
- Gong, X.; Yang, M.; Liu, J.-B.; He, F.-S.; Fan, X.; Wu, J. A metal-free route to alkynyl sulfones under photoinduced conditions with the insertion of sulfur dioxide. Green Chem. 2020, 22, 1906–1910. [Google Scholar] [CrossRef]
- Li, J.; Bao, W.; Zhang, Y.; Rao, Y. Metal-free cercosporin-photocatalyzed C-S coupling for the selective synthesis of aryl sulfides under mild conditions. Eur. J. Org. Chem. 2019, 2019, 7175–7178. [Google Scholar] [CrossRef]
- Li, R.; Shi, T.; Chen, X.-L.; Lv, Q.-Y.; Zhang, Y.-L.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. Visible-light-promoted organic dye-catalyzed sulfidation and phosphorylation of arylhydrazines toward aromatic sulfides and diarylphosphoryl hydrazides. New J. Chem. 2019, 43, 13642–13646. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Catalyst-free visible-light-initiated oxidative coupling of aryldiazo sulfones with thiols leading to unsymmetrical sulfoxides in air. Green Chem. 2019, 21, 1609–1613. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Ji, P.; Hu, W.; Wei, Y.; Huang, H. Organocatalytic transformation of aldehydes to thioesters with visible light. Chem. Eur. J. 2019, 25, 8225–8228. [Google Scholar] [CrossRef]
- Pramanik, M.; Choudhuri, K.; Mathuri, A.; Mal, P. Dithioacetalization or thioetherification of benzyl alcohols by 9- Mesityl-10-methylacridinium perchlorate photocatalyst. Chem. Commun. 2020, 56, 10211–10214. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, B.; Hong, S.H. Direct allylic C(sp3)-H thiolation with disulfides via visible light photoredox catalysis. ACS Catal. 2020, 10, 6013–6022. [Google Scholar] [CrossRef]
- Álvarez-Pérez, M.; Ali, W.; Mar´c, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018, 23, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, C.; Huan, Y.; Cao, H.; Sun, S.; Lei, L.; Liu, Q.; Liu, S.; Ji, W.; Huang, K.; et al. Diphenyl diselenide ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats via suppressing oxidative stress and inflammation. Chem. Biol. Interact. 2021, 338, 109427–109440. [Google Scholar] [CrossRef]
- Zhang, Q.-B.; Yuan, P.-F.; Kai, L.-L.; Liu, K.; Ban, Y.-L.; Wang, X.-Y.; Wu, L.-Z.; Liu, Q. Preparation of heterocycles via visible-light-driven aerobic selenation of olefins with diselenides. Org. Lett. 2019, 21, 885–889. [Google Scholar] [CrossRef]
- Jung, H.I.; Kim, D.Y. Synthesis of β-Selenylated Cyclopentanones via Photoredox-Catalyzed Selenylation/Ring-Expansion Cascades of Alkenyl Cyclobutanols. Synlett 2019, 30, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Li, Y.; Yang, C.; Xia, W. Three-component aminoselenation of alkenes via visible-light enabled Fe-catalysis. Green Chem. 2020, 22, 2804–2809. [Google Scholar] [CrossRef]
- Wang, R.; Xie, H.; Lai, X.; Liu, J.-B.; Li, J.; Qiu, G. Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. Mol. Catal. 2021, 515, 111881. [Google Scholar] [CrossRef]
- Zhou, J.; Li, W.; Zheng, H.; Pei, Y.; Liu, X.; Cao, H. Visible light-induced cascade cyclization of 3-aminoindazoles, ynals, and chalcogens: Access to chalcogen-containing pyrimido[1,2-b]-indazoles. Org. Lett. 2021, 23, 2754–2759. [Google Scholar] [CrossRef]
- Thurow, S.; Abenante, L.; Anghinoni, J.M.; Lenardão, E.J. Selenium as a versatile reagent in organic synthesis: More than allylic oxidation. Curr. Org. Synth. 2022, 19, 331–365. [Google Scholar] [CrossRef]
- Chachignon, H.; Cahard, D. State-of-the-art in electrophilic trifluoromethylthiolation reagents. Chin. J. Chem. 2016, 34, 445–454. [Google Scholar] [CrossRef]
- Ghiazza, C.; Monnereau, C.; Khrouz, L.; Médebielle, M.; Billard, T.; Tlili, A. New avenues in radical trifluoromethylselenylation with trifluoromethyl tolueneselenosulfonate. Synlett 2019, 30, 777–782. [Google Scholar] [CrossRef]
- Zordo-Banliat, A.; Barthélémy, L.; Bourdreux, F.; Tuccio, B.; Dagousset, G.; Pégot, B.; Magnier, E. Visible-light-induced metal-free trifluoromethylselenolation of electron-rich heteroarenes using the nucleophilic [Me4N][SeCF3] reagent. Eur. J. Org. Chem. 2020, 4, 506–509. [Google Scholar] [CrossRef]
- Han, Q.-Y.; Tan, K.-L.; Wang, H.N.; Zhang, C.P. Organic photoredox-catalyzed decarboxylative trifluoromethylselenolation of aliphatic carboxylic acids with [Me4N][SeCF3]. Org. Lett. 2019, 21, 10013–10017. [Google Scholar] [CrossRef]
- Lu, K.; Li, Q.; Xi, X.; Zhou, T.; Zhao, X. Methylselenolation of arylamines under visible light photocatalysis. J. Org. Chem. 2020, 85, 1224–1231. [Google Scholar] [CrossRef]
- Karmarker, P.G.; Huo, F. Organic Selenocyanates: Rapid Advancements and Applicationsin the Field of Organic Chemistry. Asian J. Org. Chem. 2022, 11, e202200226. [Google Scholar] [CrossRef]
- Xie, Q.; Yang, Y.; Zhang, W.; Gao, Z.; Li, X.; Tang, J.; Pana, C.; Yu, G. Polarization-induced charge separation in conjugated microporous polymers for efficient visible light-driven C-3 selenocyanation of indoles. Chem. Sci. 2021, 12, 5631–5637. [Google Scholar] [CrossRef]
- Zhao, X.; Ji, L.; Gao, Y.; Sun, T.; Qiao, J.; Li, A.; Lu, K. Visible-light-promoted selenocyanation of cyclobutanone oxime esters using potassium selenocyanate. J. Org. Chem. 2021, 86, 11399–11406. [Google Scholar] [CrossRef]
- Abdtawfeeq, T.H.; Mahmood, E.A.; Azimi, S.B.; Kadhim, M.M.; Kareem, R.T.; Charatig, F.R.; Vessally, E. Direct selenosulfonylation of unsaturated compounds: A review. RSC Adv. 2022, 12, 30564–30576. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, P.; Wang, S.-W.; Ji, S.J. Visible light-induced Co- or Cu-catalyzed selenosulfonylation of alkynes: Synthesis of β-(seleno)vinyl sulfones. J. Org. Chem. 2019, 84, 12324–12333. [Google Scholar] [CrossRef] [PubMed]
- Ghiazza, C.; Khrouz, L.; Billard, T.; Monnereau, C.; Tlili, A. Fluoroalkylselenolation of alkyl silanes/trifluoroborates under metal-free visible-light photoredox catalysis. eurJOC 2020, 10, 1559–1566. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, X.-E.; Wang, S.-L.; Zhang, L.-L.; Zhou, X.-Z.; Wang, S.-Y.; Ji, S.-J. Visible-light-promoted cross-coupling reactions of 4-Alkyl-1,4- dihydropyridines with thiosulfonate or selenium sulfonate: A unified approach to sulfides, selenides, and sulfoxides. Org. Lett. 2020, 22, 4908–4913. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, S.-Y. Visible-light-promoted cross-coupling reaction of hypervalent bis-catecholato silicon compounds with selenosulfonates or thiosulfonates. Org. Chem. Front. 2021, 8, 1976–1982. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, N.; Li, Y.; Mo, Z.; Ma, X.; Chen, Y.; Xu, Y. Metal-free synthesis of 3-sulfonyl-5-selanyl-4a,8a-dihydro2H-chromen-6(5H)-ones via visible light driven intermolecular cascade cyclization of alkyne-tethered cyclohexadienones and selenosulfonates. Green Synth. Catal. 2021, 2, 397–400. [Google Scholar] [CrossRef]
- Liu, B.-X.; Wang, F.; Chen, Y.; Rao, W.-D.; Shenc, S.-S.; Wang, S.-Y. Visible-light-promoted denitrogenative orthoselenylation reaction of benzotriazinones: Synthesis of ortho-selenylated benzamides and ebselen analogs. Org. Chem. Front. 2022, 9, 2418–2423. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartz, R.H.; Dapper, L.H.; Kazmierczak, J.C.; Schumacher, R.F.; Perin, G.; Thurow, S.; Penteado, F.; Lenardão, E.J. Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023, 13, 520. https://doi.org/10.3390/catal13030520
Bartz RH, Dapper LH, Kazmierczak JC, Schumacher RF, Perin G, Thurow S, Penteado F, Lenardão EJ. Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts. 2023; 13(3):520. https://doi.org/10.3390/catal13030520
Chicago/Turabian StyleBartz, Ricardo H., Luiz H. Dapper, Jean C. Kazmierczak, Ricardo F. Schumacher, Gelson Perin, Samuel Thurow, Filipe Penteado, and Eder J. Lenardão. 2023. "Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches" Catalysts 13, no. 3: 520. https://doi.org/10.3390/catal13030520
APA StyleBartz, R. H., Dapper, L. H., Kazmierczak, J. C., Schumacher, R. F., Perin, G., Thurow, S., Penteado, F., & Lenardão, E. J. (2023). Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts, 13(3), 520. https://doi.org/10.3390/catal13030520