Optimizing In Situ Combustion with Manganese (II) Oxide Nanoparticle-Catalyzed Heavy Oil Oxidation
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Methods
3.1. Materials
3.2. Synthesis of MnO Nanoparticles
3.3. MnO Nanoparticles Characterization
3.3.1. X-ray Powder Diffraction (XRPD)
3.3.2. Electron Microscopy Analysis
3.3.3. Measurements of Nitrogen Adsorption and Desorption
3.3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meyer, R.F.; Attanasi, E.D.; Freeman, P.A. Heavy Oil and Natural Bitumen Resources in Geological Basins of the World: Map Showing Klemme Basin Classification of Sedimentary Provinces Reporting Heavy Oil or Natural Bitumen. US Geol. Surv. Open-File Rep. 2007, 2007, 1084. [Google Scholar]
- Kapustin, N.O.; Grushevenko, D.A. Global Prospects of Unconventional Oil in the Turbulent Market: A Long Term Outlook to 2040. Oil Gas Sci. Technol. d’IFP Energ. Nouv. 2018, 73, 67. [Google Scholar] [CrossRef]
- Tumanyan, B.P.; Romanov, G.V.; Nurgaliev, D.K.; Kayukova, G.P.; Petrukhina, N.N. Promising Aspects of Heavy Oil and Native Asphalt Conversion under Field Conditions. Chem. Technol. Fuels Oils 2014, 50, 185–188. [Google Scholar] [CrossRef]
- Moore, R.G.; Laureshen, C.J.; Belgrave, J.D.M.; Ursenbach, M.G.; (Raj) Mehta, S.A. In Situ Combustion in Canadian Heavy Oil Reservoirs. Fuel 1995, 74, 1169–1175. [Google Scholar] [CrossRef]
- Castanier, L.M.; Brigham, W.E. Upgrading of Crude Oil via in Situ Combustion. J. Pet. Sci. Eng. 2003, 39, 125–136. [Google Scholar] [CrossRef]
- Nelson, T.W.; McNeil, J.S. How to Engineer an In-Situ Combustion Project. Oil Gas J. 1961, 58, 58. [Google Scholar]
- Dong, X.; Liu, H.; Chen, Z.; Wu, K.; Lu, N.; Zhang, Q. Enhanced Oil Recovery Techniques for Heavy Oil and Oilsands Reservoirs after Steam Injection. Appl. Energy 2019, 239, 1190–1211. [Google Scholar] [CrossRef]
- Baud, G.; Salvador, S.; Debenest, G.; Thovert, J.F. New Granular Model Medium to Investigate Smoldering Fronts Propagation-Experiments. Energy Fuels 2015, 29, 6780–6792. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Guan, W.; Jiang, Y.; Xi, C.; Wang, B.; Li, X. Propagation and Control of Fire Front in the Combustion Assisted Gravity Drainage Using Horizontal Wells. Pet. Explor. Dev. 2012, 39, 764–772. [Google Scholar] [CrossRef]
- Khelkhal, M.A.; Eskin, A.A.; Nurgaliev, D.K.; Vakhin, A.V.A. V Thermal Study on Stabilizing the Combustion Front via Bimetallic Mn@Cu Tallates during Heavy Oil Oxidation. Energy Fuels 2020, 34, 5121–5127. [Google Scholar] [CrossRef]
- Farhadian, A.; Khelkhal, M.A.; Tajik, A.; Lapuk, S.E.; Rezaeisadat, M.; Eskin, A.A.; Rodionov, N.O.; Vakhin, A.V. Effect of Ligand Structure on the Kinetics of Heavy Oil Oxidation: Toward Biobased Oil-Soluble Catalytic Systems for Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2021, 60, 14713–14727. [Google Scholar] [CrossRef]
- Al-Mishaal, O.F.; Suwaid, M.A.; Al-Muntaser, A.A.; Khelkhal, M.A.; Varfolomeev, M.A.; Djimasbe, R.; Zairov, R.R.; Saeed, S.A.; Vorotnikova, N.A.; Shestopalov, M.A. Octahedral Cluster Complex of Molybdenum as Oil-Soluble Catalyst for Improving In Situ Upgrading of Heavy Crude Oil: Synthesis and Application. Catalysts 2022, 12, 1125. [Google Scholar] [CrossRef]
- Elahi, S.M.; Scott, C.E.; Chen, Z.; Pereira-Almao, P. In-Situ Upgrading and Enhanced Recovery of Heavy Oil from Carbonate Reservoirs Using Nano-Catalysts: Upgrading Reactions Analysis. Fuel 2019, 252, 262–271. [Google Scholar] [CrossRef]
- Hosseinpour, N.; Mortazavi, Y.; Bahramian, A.; Khodatars, L.; Khodadadi, A.A. Enhanced Pyrolysis and Oxidation of Asphaltenes Adsorbed onto Transition Metal Oxides Nanoparticles towards Advanced In-Situ Combustion EOR Processes by Nanotechnology. Appl. Catal. A Gen. 2014, 477, 159–171. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Yuan, C.; Bolotov, A.V.; Minkhanov, I.F.; Mehrabi-Kalajahi, S.; Saifullin, E.R.; Marvanov, M.M.; Baygildin, E.R.; Sabiryanov, R.M.; Rojas, A. Effect of Copper Stearate as Catalysts on the Performance of In-Situ Combustion Process for Heavy Oil Recovery and Upgrading. J. Pet. Sci. Eng. 2021, 207, 109125. [Google Scholar] [CrossRef]
- Khelkhal, M.A.; Lapuk, S.E.; Ignashev, N.E.; Eskin, A.A.; Glyavin, M.Y.; Peskov, N.Y.; Krapivnitskaia, T.O.; Vakhin, A.V. A Thermal Study on Peat Oxidation Behavior in the Presence of an Iron-Based Catalyst. Catalysts 2021, 11, 1344. [Google Scholar] [CrossRef]
- Ranjbar, M. Influence of Reservoir Rock Composition on Crude Oil Pyrolysis and Combustion. J. Anal. Appl. Pyrolysis 1993, 27, 87–95. [Google Scholar] [CrossRef]
- Ovalles, C.; Filgueiras, E.; Morales, A.; Scott, C.E.; Gonzalez-Gimenez, F.; Pierre Embaid, B. Use of a Dispersed Iron Catalyst for Upgrading Extra-Heavy Crude Oil Using Methane as Source of Hydrogen. Fuel 2003, 82, 887–892. [Google Scholar] [CrossRef]
- He, B.; Chen, Q.; Castanier, L.M.; Kovscek, A.R. Improved In-Situ Combustion Performance with Metallic Salt Additives. In Proceedings of the SPE Western Regional Meeting; Society of Petroleum Engineers: Irvine, CA, USA, 2005; pp. 421–437. [Google Scholar]
- Shokrlu, Y.H.; Maham, Y.; Tan, X.; Babadagli, T.; Gray, M. Enhancement of the Efficiency of in Situ Combustion Technique for Heavy-Oil Recovery by Application of Nickel Ions. Fuel 2013, 105, 397–407. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Karimian, M.; Choi, H.J. Synthesis and Thermal Analysis of Hydrophobic Iron Oxide Nanoparticles for Improving In-Situ Combustion Efficiency of Heavy Oils. J. Ind. Eng. Chem. 2019, 71, 402–409. [Google Scholar] [CrossRef]
- Amanam, U.U.; Koh Yoo, K.H.; Castanier, L.; Kovscek, A.R. Investigation of the Effects of Select Metal Nanoparticles on Heavy Oil Combustion in Porous Media. Energy Fuels 2019, 34, 130–141. [Google Scholar] [CrossRef]
- Amanam, U.U.; Kovscek, A.R. Analysis of the Effects of Copper Nanoparticles on In-Situ Combustion of Extra Heavy-Crude Oil. J. Pet. Sci. Eng. 2017, 152, 406–415. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Fan, Z. Enhanced in Situ Combustion of Heavy Crude Oil by Nickel Oxide Nanoparticles. Int. J. Energy Res. 2019, 43, 3399–3412. [Google Scholar] [CrossRef]
- Nassar, N.N.; Hassan, A.; Vitale, G. Comparing Kinetics and Mechanism of Adsorption and Thermo-Oxidative Decomposition of Athabasca Asphaltenes onto TiO2, ZrO2, and CeO2 Nanoparticles. Appl. Catal. A Gen. 2014, 484, 161–171. [Google Scholar] [CrossRef]
- Montoya, T.; Argel, B.L.; Nassar, N.N.; Franco, C.A.; Cortés, F.B. Kinetics and Mechanisms of the Catalytic Thermal Cracking of Asphaltenes Adsorbed on Supported Nanoparticles. Pet. Sci. 2016, 13, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Galukhin, A.V.; Khelkhal, M.A.; Eskin, A.V.; Osin, Y.N. Catalytic Combustion of Heavy Oil in the Presence of Manganese-Based Submicroparticles in a Quartz Porous Medium. Energy Fuels 2017, 31, 11253–11257. [Google Scholar] [CrossRef]
- Khelkhal, M.A.; Eskin, A.A.; Sharifullin, A.V.; Vakhin, A.V. Differential Scanning Calorimetric Study of Heavy Oil Catalytic Oxidation in the Presence of Manganese Tallates. Pet. Sci. Technol. 2019, 37, 1194–1200. [Google Scholar] [CrossRef]
- Galukhin, A.; Nosov, R.; Eskin, A.; Khelkhal, M.; Osin, Y. Manganese Oxide Nanoparticles Immobilized on Silica Nanospheres as a Highly Efficient Catalyst for Heavy Oil Oxidation. Ind. Eng. Chem. Res. 2019, 58, 8990–8995. [Google Scholar] [CrossRef]
- Clarke, T.J.; Kondrat, S.A.; Taylor, S.H. Total Oxidation of Naphthalene Using Copper Manganese Oxide Catalysts. Catal. Today 2015, 258, 610–615. [Google Scholar] [CrossRef]
- Ferrandon, M.; Carnö, J.; Järås, S.; Björnbom, E. Total Oxidation Catalysts Based on Manganese or Copper Oxides and Platinum or Palladium II: Activity, Hydrothermal Stability and Sulphur Resistance. Appl. Catal. A Gen. 1999, 180, 153–161. [Google Scholar] [CrossRef]
- Huang, G.; Luo, J.; Deng, C.C.; Guo, Y.A.; Zhao, S.K.; Zhou, H.; Wei, S. Catalytic Oxidation of Toluene with Molecular Oxygen over Manganese Tetraphenylporphyrin Supported on Chitosan. Appl. Catal. A Gen. 2008, 338, 83–86. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Physical Chemistry Thermodynamics, Structure, and Change; WH Freeman and Company: New York, NY, USA, 2014. [Google Scholar]
- Isakov, D.R.; Nurgaliev, D.K.; Shaposhnikov, D.A.; Mingazov, B.M. Physico-Chemical and Technological Aspects of the Use of Catalysts during In-Situ Combustion for the Production of High-Viscosity Crude Oils and Natural Bitumens. Chem. Technol. Fuels Oils 2015, 50, 541–546. [Google Scholar] [CrossRef]
Sample | β, °C·min−1 | Noncatalytic | Catalytic | ||
---|---|---|---|---|---|
Range, °C | Tp, °C | Range, °C | Tp, °C | ||
LTO | 5 | 264−435 | 332.9 | 264−435 | 335.3 |
10 | 290−424 | 351.6 | 290−424 | 354.3 | |
15 | 314−432 | 362.2 | 314−432 | 365.7 | |
20 | 282−477 | 370.2 | 282−477 | 373.9 | |
HTO | 5 | 421−480 | 475.3 | 421−470 | 433.6 |
10 | 450−512 | 495.8 | 450−484 | 450.6 | |
15 | 460−516 | 510.7 | 460−501 | 463.1 | |
20 | 472−525 | 518.4 | 472−510 | 470.0 |
Noncatalytic | Catalytic | |||
---|---|---|---|---|
LTO | HTO | LTO | HTO | |
Ea, kJ/mol | 110.1 ± 1.8 | 142.8 ± 8.3 | 98.9 ± 0.7 | 151.9 ± 0.6 |
lnA, A in min−1 | 10.6 | 11.3 | 9.5 | 14.3 |
Viscosity (mPa·s) | Density (g/cm) | SARA Fractions wt.% | Elemental Analysis wt.% | ||||||
---|---|---|---|---|---|---|---|---|---|
S | A | R | A | C | H | N | S | ||
11,811 | 0.97 | 26.2 ± 0.5 | 44.1 ± 0.6 | 26.3 ± 0.5 | 4.5 ± 0.3 | 82.09 | 10.12 | 0.63 | 2.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelkhal, M.-A.; Eskin, A.A.; Varfolomeev, M.A. Optimizing In Situ Combustion with Manganese (II) Oxide Nanoparticle-Catalyzed Heavy Oil Oxidation. Catalysts 2023, 13, 491. https://doi.org/10.3390/catal13030491
Khelkhal M-A, Eskin AA, Varfolomeev MA. Optimizing In Situ Combustion with Manganese (II) Oxide Nanoparticle-Catalyzed Heavy Oil Oxidation. Catalysts. 2023; 13(3):491. https://doi.org/10.3390/catal13030491
Chicago/Turabian StyleKhelkhal, Mohammed-Amine, Alexey A. Eskin, and Mikhail A. Varfolomeev. 2023. "Optimizing In Situ Combustion with Manganese (II) Oxide Nanoparticle-Catalyzed Heavy Oil Oxidation" Catalysts 13, no. 3: 491. https://doi.org/10.3390/catal13030491
APA StyleKhelkhal, M.-A., Eskin, A. A., & Varfolomeev, M. A. (2023). Optimizing In Situ Combustion with Manganese (II) Oxide Nanoparticle-Catalyzed Heavy Oil Oxidation. Catalysts, 13(3), 491. https://doi.org/10.3390/catal13030491