Bio-Fabrication of Trimetallic Nanoparticles and Their Applications
Abstract
:1. Introduction
2. Different Types of Nanomaterials/Nanoparticles
3. Trimetallic Nanoparticles
3.1. Physical Synthesis
3.1.1. Microwave-Assisted Synthesis
3.1.2. Ultrasonic-Assisted Synthesis
3.1.3. Laser Synthesis
Trimetallic Nanocomposites | Method | Shape | Size | Activity | Methods of Characterization of NPs | References |
---|---|---|---|---|---|---|
Au/Pt/Ag | Microwave Irradiation | Dark nanofluid | 20 nm | - | XRD, SEM, Surface enhanced Raman scattering (SERS) | [47] |
Pt/Au/Ru | Ultrasonic-assisted | Nearly spherical (Highly porous) | 77 nm | Highly electrocatalytic toward formic acid oxidation | TEM, XRD, XPS | [44] |
Al2O3@AgAu | Laser synthesis | Polycrystalline | 15 nm | Catalytic activity | UV-vis, TEM | [46] |
La/Cu/Zr/Carbon dots | Microwave Method | Fibrous | 30–100 nm | Adsorption/Photo catalytic activity in order to remove organic pollutants | FTIR, XRD, TEM, UV-vis, SEM | [42] |
Au/Pt/Ag | Microwave Method | Nanofluid | 20–40 nm | Antibacterial activity | UV-vis, XRD, TEM, HR-TEM, SEM, and MIC | [43] |
Au/Pt/Pd/reduced graphene oxide | Physical adsorption on GCE(glassy carbon electrode) | Spherical | 80–100 nm | Electrochemical catalyst for the reduction of H2O2 and diagnosis of breast cancer cells | TEM, EDX, XRD | [48] |
3.2. Chemical Synthesis
3.2.1. Co-Precipitation
3.2.2. Hydrothermal Method
3.2.3. Chemical Reduction
Trimetallic Nanoparticles | Method | Shape | Size | Activity | Characterization | Reference |
---|---|---|---|---|---|---|
Au/Pt/Pd | Rapid Injection of NaBH4 | Round | 1.7 nm | Catalytic activity for aerobic glucose oxidation | UV-vis, TEM, HR-TEM | [53] |
Au/Pt/Pd | CTAB capped Au attached with Pt and then Pd by the ascorbic acid reduction pathway | Dog-bone shaped | 75–90 nm | Efficient ethanol electrooxidation reaction | UV-vis, TEM, HRTEM, EDAX, XRD, XPS, FTIR, Raman analysis | [50] |
Co/Zr/Sb | Method of co-precipitation | Dark cores encircled by additional shells | 18–23 nm | Reductive coupling of nitroarenes to the azoxyarenees | FTIR, SEM, EDX, VSM, TEM, XRD | [27] |
Pt/Au/Ag | Seed mediated growth process | Spherical | 40–50 nm | Electrocatalysts for glycerol oxidation | TEM, HPLC | [54] |
Fe/Cu/Ag | Sodium borohydride reduction | Spherical (appear as chain-like agglomerates) | 60–90 nm | Degradation of methyl orange dye in water | XRD, XPS, EDX, TEM | [55] |
Au/Pd/Pt | Seed mediated growth | Cluster of island | 55 nm | Photoelectrocatalyst activity | SEM, TEM, SERS, HRTEM, Cyclic voltammetery (CV) | [56] |
Au/Pd/Ag | Seed mediated co-reduction | Polyhedral Structure | 30 nm | TEM, STEM (Scanning TEM), XRD, EDX | [57] | |
Au/Pd/Ru | Seed mediated growth | Porous | 110 nm | Catalytic activity for the degradation of azo-based dyes and the reduction of PNP | TEM, FE-SEM, EDS, UV-vis | [58] |
Cu/Zn/Mn | Co-precipitation method | Spherical with agglomeration | 90 ± 3 nm | Electrochemical glucose sensor, degradation of methylene blue dye, and antibacterial against E. coli | Uv-visible spectroscopy, FTIR, SEM, HR-TEM, XRD, EDAX, XPS, TG-DSC | [59] |
Sn/Zn/Cu | Chemical reduction | Core-Shell structure | 20 nm | Electron Microscopy, XRD | [60] | |
Ag/Cu/Pt | Chemical reduction | Core-Shell Structure (Spherical) | 32.89 ± 4.35 nm | TEM, XRD, EDS | [61] | |
Fe/Ag/Pd | Seedless and co-reduction | Nano and capsule-like | Capsule like 93, Nanolike: 50 | catalytic activity for the hydration of formic acid in an aqueous solution to produce hydrogen | UV-vis, TEM, XRD, EDX | [62] |
Cu/Ni/Zn | Co-precipitation method | Agglomerated | 7 ± 2 nm | Antibacterial efficacy against Escherichia coli, Staphylococcus aureus | XRD, FESEM, UV-vis, FTIR, TEM | [63] |
Ag/Au/Pt | Galvanic replacement reaction | Porous nanocages | 70 nm | Trace fluorescent dye detection | UV-vis, TEM, HR-TEM, XRD | [52] |
Pt/Ni/Cu | Facile hydrothermal method | Porous | 40 nm | Boost the methanol oxidation’s activity and stability | XRD, TEM, HR-TEM, SEM | [49] |
3.3. Biological Synthesis
3.3.1. Plants
Agent | Trimetallic Nanocomposites | Shape | Size | Activity | Characterization Method | References |
---|---|---|---|---|---|---|
Lamii albi flos | Au/Pt/Ag | Spherical | 40 nm | Antimicrobial against Enterococcus faecalis and Enterococcus faecium | UV-vis spectroscopy, FTIR, SEM, TEM, AFM | [70] |
Salvia officinalis | Ag/Cu/Co | Spherical | 3.25 nm | Fungicidal against Candida auris | FTIR, SEM, TEM, EDX, XRD, TGA | [37] |
Eryngium campestre and Froriepia subpinnata | Cu/Cr/Ni | Cube-like/Plate-like | 14.15 nm using mixed leaf extract | Antibacterial efficacy against Escherichia coli and Staphylococcus aureus | TEM, UV-vis spectroscopy, XRD, FTIR, EDX, FESEM | [67] |
Origanum vulgare | Cu/Co/Ni | Nanoflake-like | 28.25 nm | Photocatalytic dye degradation | UV-vis, SEM, TEM, XRD, FTIR, TGA, DTG, EDX | [71] |
Brassica juncea | Au/Ag/Cu | Spherical | ~5–50 nm | NA | STEM, EDX, HAADF, FTIR | [66] |
Meliloti officinalis | Au/Zno/Ag | Spherical, triangular and hexagonal | ~20 nm | NA | UV-vis spectroscopy, SEM, FTIR, TEM, AFM, XRD | [72] |
Syzygium aromaticum and Aegle marmelos | Ag/Au/Pd | Spherical | 8–11 nm | Glucose oxidation and antimicrobial against E. coli | Uv-vis spectroscopy, TEM, SEM, FT-IR | [29] |
Platycodon grandiflorum | Fe/Ag/Pt | Spherical | ~10–20 nm | Lowering of 4-nitroaniline and decolorization of rhodamine B | UV-vis spectroscopy, XRD, FE-TEM, FTIR, VSM | [73] |
Coriandrum sativum | Au/Ag/Sr | Almost spherical | 70 nm | Gas sensing | UV-vis, FE-SEM, FTIR, XRD | [74] |
Echinops persicus | Cu/Cr/Ni | Antibacterial efficacy against E.coli, B.cereus, S. aureus Catalytic activity towards quinolines and spirooxindoles Action of cytoxicity against human colon cancer (HT29) cells | TEM, FE-SEM, UV-vis, EDX, XRD, FTIR, EDX, DLS | [75] | ||
Coriander sativum | Ni/Cr/Cu | NA | NA | Antibacterial and antifungal | UV-vis, XRD | [76] |
Verbena ofcinalis | Au/CuO/ZnO | Mostly spherical | 35 nm | Antileukemia | UV-vis, FTIR, TEM, AFM | [77] |
Gum Kondagogu from Cochlospermum gossypium | Ag/Au/Pd | Regularly dispersed and spherical | 10–45 nm | Catalytic degradation of 4-nitrophenol | XPS, UV-vis, XRD, FTIR, SEM, EDX, TEM, ICP-MS, DLS and PALS | [78] |
Caesalpinia bonduc | Ag/Bi/SnO2 | Agglomerated, with edge having irregular shapes | NA | Photocatalytic activity | XRD, SEM, SAA, EDX, FTIR | [79] |
Astragalus membranaceus | Au/Fe/Ag | Ant-shaped nanoparticles | 100 nm | Strong catalytic activity for the production of beta, alpha and, beta-dichloroenones | UV-vis, XRD, TEM, HRTEM, AFM, EDS, XPS | [15] |
Vitex agnus-castus | Au/CuO/ZnO | Spherical and locally agglomerated | 5–25 nm | Dye degradation by catalytic activity | TEM, AFM, SEM, UV-vis, FT-IR | [72] |
Malus Domestica Peels | Pd/Pt/Co | NA | NA | Hydrogen production and photocatalytic activity | UV-vis, FTIR, XRD | [80] |
Shewanella oneidensis MR-1 | Pd/Au/Fe | Nanorods | 200–300 nm | Catalytic reduction of nitroaromatic compounds | TEM, XRD, EDX, XPS, VSM, FTIR, CLSM, TGA | [81] |
3.3.2. Other Biological Agents
4. Applications
4.1. Biomedical Applications
4.1.1. Antimicrobial Activity
4.1.2. Anticancer
4.1.3. Biosensors
4.1.4. Drug Delivery System
4.2. Catalytic Degradation of Heavy Metals and Toxic Pollutants
4.3. Active Food Packaging
5. Current Challenges/Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, A.; Roy, A.; Bhasin, S.; Bin Emran, T.; Khusro, A.; Eftekhari, A.; Moradi, O.; Rokni, H.; Karimi, F. Nanomaterials: An alternative source for biodegradation of toxic dyes. Food Chem. Toxicol. 2022, 164, 112996. [Google Scholar] [CrossRef] [PubMed]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Bin Emran, T.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ. Sci. 2022, 34, 101869. [Google Scholar] [CrossRef]
- Roy, A.; Elzaki, A.; Tirth, V.; Kajoak, S.; Osman, H.; Algahtani, A.; Islam, S.; Faizo, N.L.; Khandaker, M.U.; Islam, M.N.; et al. Biological synthesis of nanocatalysts and their applications. Catalysts 2021, 11, 1494. [Google Scholar] [CrossRef]
- Roy, A.; Bharadvaja, N. Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired Biomim. Nanobiomater. 2019, 8, 130–140. [Google Scholar] [CrossRef]
- Patanjali, P.; Singh, R.; Kumar, A.; Chaudhary, P. Nanotechnology for water treatment: A green approach. Green Synth. Charact. Appl. Nanopart. 2019, 485–512. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials 2020, 10, 1784. [Google Scholar] [CrossRef]
- Roy, A.; Roy, M.; Alghamdi, S.; Dablool, A.S.; Almakki, A.A.; Ali, I.H.; Yadav, K.K.; Islam, R.; Cabral-Pinto, M.M.S. Role of Microbes and Nanomaterials in the Removal of Pesticides from Wastewater. Int. J. Photoenergy 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Raina, S.; Roy, A.; Bharadvaja, N. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100278. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015, 5, 19–23. [Google Scholar] [CrossRef]
- Murthy, H.C.; Ghotekar, S.; Vinay Kumar, B.; Roy, A. Graphene: A Multifunctional Nanomaterial with Versatile Applications. Adv. Mater. Sci. Eng. 2021, 2021, 2418149. [Google Scholar] [CrossRef]
- Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci. 2015, 2277, 2502. [Google Scholar]
- Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 2016, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Salve, P.; Vinchurkar, A.; Raut, R.; Chondekar, R.; Lakkakula, J.; Roy, A.; Hossain, J.; Alghamdi, S.; Almehmadi, M.; Abdulaziz, O.; et al. An Evaluation of Antimicrobial, Anticancer, Anti-Inflammatory and Antioxidant Activities of Silver Nanoparticles Synthesized from Leaf Extract of Madhuca longifolia Utilizing Quantitative and Qualitative Methods. Molecules 2022, 27, 6404. [Google Scholar] [CrossRef]
- Park, T.; Lee, S.; Heo, N.; Seo, T. In Vivo Synthesis of Diverse Metal Nanoparticles by Recombinant Escherichia coli. Angew. Chem. 2010, 122, 7173–7178. [Google Scholar] [CrossRef]
- Mishra, K.; Basavegowda, N.; Lee, Y. AuFeAg hybrid nanoparticles as an efficient recyclable catalyst for the synthesis of α,β- and β,β-dichloroenones. Appl. Catal. A Gen. 2015, 506, 180–187. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, J.; Ye, H.; Li, L.; Wang, H.; Li, X.; Zhang, X.; Li, H. Ni0.5Cu0.5Co2O4 Nanocomposites, Morphology, Controlled Synthesis, and Catalytic Performance in the Hydrolysis of Ammonia Borane for Hydrogen Production. Nanomaterials 2019, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, K.E.; Niazy, A.A.; Alswieleh, A.M.; Wahab, R.; El-Toni, A.M.; Alghamdi, H.S. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int. J. Nanomedicine. 2018, 13, 77. [Google Scholar] [CrossRef]
- Akbarzadeh, H.; Abbaspour, M.; Mehrjouei, E.; Kamrani, M. AgPd@Pt nanoparticles with different morphologies of cuboctahedron, icosahedron, decahedron, octahedron, and Marks-decahedron: Insights from atomistic simulations. Inorg. Chem. Front. 2018, 5, 870–878. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, Y.; Zhang, L.; Liang, L.; Liu, H.; Yan, M.; Huang, J.; Yu, J. Ultrasensitive electrochemical cancer cells sensor based on trimetallic dendritic Au@PtPd nanoparticles for signal amplification on lab-on-paper device. Sens. Actuators B Chem. 2015, 220, 665–672. [Google Scholar] [CrossRef]
- Hoseini Chopani, S.M.; Asadi, S.; Heravi, M.M. Application of bimetallic and trimetallic nanoparticles supported on graphene as novel heterogeneous catalysts in the reduction of nitroarenes, homo-coupling, Suzuki-Miyaura and Sonogashira reactions. Curr. Org. Chem. 2020, 24, 2216–2234. [Google Scholar] [CrossRef]
- Tang, M.; Luo, S.; Wang, K.; Du, H.; Sriphathoorat, R.; Shen, P. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786–4795. [Google Scholar] [CrossRef]
- Kamli, M.; Srivastava, V.; Hajrah, N.; Sabir, J.; Hakeem, K.; Ahmad, A.; Malik, M. Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. J. Fungi 2021, 7, 62. [Google Scholar] [CrossRef]
- Crawley, J.W.M.; Gow, I.E.; Lawes, N.; Kowalec, I.; Kabalan, L.; Catlow, C.R.A.; Logsdail, A.J.; Taylor, S.H.; Dummer, N.F.; Hutchings, G.J. Heterogeneous trimetallic nanoparticles as catalysts. Chem. Rev. 2022, 122, 6795–6849. [Google Scholar] [CrossRef] [PubMed]
- Ghazzy, A.; Yousef, L.; Al-Hunaiti, A. Visible Light Induced Nano-Photocatalysis Trimetallic Cu0. 5Zn0. 5-Fe: Synthesis, Characterization and Application as Alcohols Oxidation Catalyst. Catalysts 2022, 12, 611. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Kou, J.; Bennett-Stamper, C.; Varma, R.S. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions. ACS Sustain. Chem. Eng. 2013, 1, 810–816. [Google Scholar] [CrossRef]
- Zeynizadeh, B.; Gilanizadeh, M. Green and highly efficient approach for the reductive coupling of nitroarenes to azoxyarenes using the new mesoporous Fe3O4@SiO2@Co–Zr–Sb catalyst. Res. Chem. Intermed. 2020, 46, 2969–2984. [Google Scholar] [CrossRef]
- Nagore, P.; Ghotekar, S.; Mane, K.; Ghoti, A.; Bilal, M.; Roy, A. Structural Properties and Antimicrobial Activities of Polyalthia longifolia Leaf Extract-Mediated CuO Nanoparticles. BioNanoScience 2021, 11, 579–589. [Google Scholar] [CrossRef]
- Rao, K.; Paria, S. Mixed Phytochemicals Mediated Synthesis of Multifunctional Ag–Au–Pd Nanoparticles for Glucose Oxidation and Antimicrobial Applications. ACS Appl. Mater. Interfaces 2015, 7, 14018–14025. [Google Scholar] [CrossRef]
- Allaedini, G.; Tasirin, S.M.; Aminayi, P. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation. Chem. Pap. 2016, 70, 231–242. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Mishra, P.K.; Talegaonkar, S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015, 21, 6165–6188. [Google Scholar] [CrossRef]
- Toshima, N. Capped Bimetallic and Trimetallic Nanoparticles for Catalysis and Information Technology. Macromol. Symp. 2008, 270, 27–39. [Google Scholar] [CrossRef]
- Venkatesan, P.; Santhanalakshmi, J. Synthesis, characterization and catalytic activity of trimetallic nanoparticles in the Suzuki C–C coupling reaction. J. Mol. Catal. A Chem. 2010, 326, 99–106. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, D.; Kumar, A.; Al-Muhtaseb, A.; Pathania, D.; Naushad, M.; Mola, G. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216–1230. [Google Scholar] [CrossRef]
- Khalid, M.; Honorato, A.M.; Tremiliosi Filho, G.; Varela, H. Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. J. Mater. Chem. A 2020, 8, 9021–9031. [Google Scholar] [CrossRef]
- Zhang, H.; Toshima, N. Glucoseoxidation using au-containing bimetallic and trimetallic nanoparticles. Catal. Sci. Technol. 2013, 3, 268–278. [Google Scholar] [CrossRef]
- Cai, X.-L.; Liu, C.-H.; Liu, J.; Lu, Y.; Zhong, Y.-N.; Nie, K.-Q.; Xu, J.-L.; Gao, X.; Sun, X.-H.; Wang, S.-D. Synergistic Effects in CNTs-PdAu/Pt Trimetallic Nanoparticles with High Electrocatalytic Activity and Stability. Nano-Micro Lett. 2017, 9, 48. [Google Scholar] [CrossRef]
- Wang, L.; Yamauchi, Y. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. J. Am. Chem. Soc. 2010, 132, 13636–13638. [Google Scholar] [CrossRef]
- Yin, H.; Yamamoto, T.; Wada, Y.; Yanagida, S. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. 2004, 83, 66–70. [Google Scholar] [CrossRef]
- Sharma, G.; Bhogal, S.; Naushad, M.; Inamuddin Kumar, A.; Stadler, F. Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J. Photochem. Photobiol. A Chem. 2017, 347, 235–243. [Google Scholar] [CrossRef]
- Yadav, N.; Jaiswal, A.; Dey, K.; Yadav, V.; Nath, G.; Srivastava, A.; Yadav, R. Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater. Chem. Phys. 2018, 218, 10–17. [Google Scholar] [CrossRef]
- Wen, Y.; Ren, F.; Bai, T.; Xu, H.; Du, Y. Facile construction of trimetallic PtAuRu nanostructures with highly porous features and perpendicular pore channels as enhanced formic acid catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 418–424. [Google Scholar] [CrossRef]
- Matin, M.; Jang, J.; Kwon, Y. One-pot sonication-assisted polyol synthesis of trimetallic core–shell (Pd, Co)@Pt nanoparticles for enhanced electrocatalysis. Int. J. Hydrog. Energy 2014, 39, 3710–3718. [Google Scholar] [CrossRef]
- Singh, R.; Soni, R. Improved Catalytic Activity of Laser Generated Bimetallic and Trimetallic Nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 6872–6879. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Loganathan, B. Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Mater. Lett. 2012, 85, 53–56. [Google Scholar] [CrossRef]
- Dong, W.; Ren, Y.; Bai, Z.; Yang, Y.; Wang, Z.; Zhang, C.; Chen, Q. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta 2018, 189, 79–85. [Google Scholar] [CrossRef]
- Lan, J.; Li, C.; Liu, T.; Yuan, Q. One-step synthesis of porous PtNiCu trimetallic nanoalloy with enhanced electrocatalytic performance toward methanol oxidation. J. Saudi Chem. Soc. 2019, 23, 43–51. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, C.; Sasmal, A.; Negishi, Y.; Pal, T. Fabrication of dog-bone shaped Au NRcore–Pt/Pdshell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J. Mater. Chem. A 2016, 4, 3765–3776. [Google Scholar] [CrossRef]
- da Silva, A.; Rodrigues, T.; Haigh, S.; Camargo, P. Galvanic replacement reaction: Recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 2017, 53, 7135–7148. [Google Scholar] [CrossRef] [PubMed]
- Bich Quyen, T.; Su, W.; Chen, C.; Rick, J.; Liu, J.; Hwang, B. Novel Ag/Au/Pt trimetallic nanocages used with surface-enhanced Raman scattering for trace fluorescent dye detection. J. Mater. Chem. B 2014, 2, 5550–5557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Mater. Res. Bull. 2014, 49, 393–398. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Xi, J. Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. Appl. Catal. B Environ. 2019, 245, 604–612. [Google Scholar] [CrossRef]
- Kgatle, M.; Sikhwivhilu, K.; Ndlovu, G.; Moloto, N. Degradation Kinetics of Methyl Orange Dye in Water Using Trimetallic Fe/Cu/Ag Nanoparticles. Catalysts 2021, 11, 428. [Google Scholar] [CrossRef]
- Yang, H.; He, L.-Q.; Wang, Z.-H.; Zheng, Y.-Y.; Lu, X.; Li, G.-R.; Fang, P.-P.; Chen, J.; Tong, Y. Surface plasmon resonance promoted photoelectrocatalyst by visible light from Au core Pd shell Pt cluster nanoparticles. Electrochim. Acta 2016, 209, 591–598. [Google Scholar] [CrossRef]
- Weiner, R.; Skrabalak, S. Seed-Mediated Co-reduction as a Route To Shape-Controlled Trimetallic Nanocrystals. Chem. Mater. 2016, 28, 4139–4142. [Google Scholar] [CrossRef]
- Sahoo, A.; Tripathy, S.; Dehury, N.; Patra, S. A porous trimetallic Au@Pd@Ru nanoparticle system: Synthesis, characterisation and efficient dye degradation and removal. J. Mater. Chem. A 2015, 3, 19376–19383. [Google Scholar] [CrossRef]
- Alam, M.W.; Al Qahtani, H.S.; Souayeh, B.; Ahmed, W.; Albalawi, H.; Farhan, M.; Abuzir, A.; Naeem, S. Novel Copper-Zinc-Manganese Ternary Metal Oxide Nanocomposite as Heterogeneous Catalyst for Glucose Sensor and Antibacterial Activity. Antioxidants 2022, 11, 1064. [Google Scholar] [CrossRef] [PubMed]
- Roshanghias, A.; Bernardi, J.; Ipser, H. An attempt to synthesize Sn-Zn-Cu alloy nanoparticles. Mater. Lett. 2016, 178, 10–14. [Google Scholar] [CrossRef]
- Tang, Z.; Jung, E.; Jang, Y.; Bhang, S.; Kim, J.; Kim, W.; Yu, T. Facile Aqueous-Phase Synthesis of Bimetallic (AgPt, AgPd, and CuPt) and Trimetallic (AgCuPt) Nanoparticles. Materials 2020, 13, 254. [Google Scholar] [CrossRef]
- Khan, Z. Trimetallic nanoparticles: Synthesis, characterization and catalytic degradation of formic acid for hydrogen generation. Int. J. Hydrog. Energy 2019, 44, 11503–11513. [Google Scholar] [CrossRef]
- Paul, D.; Mangla, S.; Neogi, S. Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle. Mater. Lett. 2020, 271, 127740. [Google Scholar] [CrossRef]
- Mittal, S.; Roy, A. Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In Photocatalytic Degradation of Dyes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 287–308. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.; Zhang, D.; Yang, D. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, R.; Marshall, A.; van Agterveld, D. Pick your carats: Nanoparticles of gold–silver–copper alloy produced in vivo. J. Nanoparticle Res. 2007, 9, 697–700. [Google Scholar] [CrossRef]
- Vaseghi, Z.; Tavakoli, O.; Nematollahzadeh, A. Rapid biosynthesis of novel Cu/Cr/Ni trimetallic oxide nanoparticles with antimicrobial activity. J. Environ. Chem. Eng. 2018, 6, 1898–1911. [Google Scholar] [CrossRef]
- Devadiga, A.; Shetty, K.; Saidutta, M. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int. Nano Lett. 2015, 5, 205–214. [Google Scholar] [CrossRef]
- Huynh, K.; Pham, X.; Kim, J.; Lee, S.; Chang, H.; Rho, W.; Jun, B. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. Int. J. Mol. Sci. 2020, 21, 5174. [Google Scholar] [CrossRef]
- Dlugaszewska, J.; Dobrucka, R. Effectiveness of Biosynthesized Trimetallic Au/Pt/Ag Nanoparticles on Planktonic and Biofilm Enterococcus faecalis and Enterococcus faecium Forms. J. Clust. Sci. 2019, 30, 1091–1101. [Google Scholar] [CrossRef]
- Alshehri, A.; Malik, M. Facile One-Pot Biogenic Synthesis of Cu-Co-Ni Trimetallic Nanoparticles for Enhanced Photocatalytic Dye Degradation. Catalysts 2020, 10, 1138. [Google Scholar] [CrossRef]
- Dobrucka, R. Biogenic synthesis of trimetallic nanoparticles Au/ZnO/Ag using Meliloti officinalis extract. Int. J. Environ. Anal. Chem. 2019, 100, 981–991. [Google Scholar] [CrossRef]
- Basavegowda, N.; Mishra, K.; Lee, Y. Trimetallic FeAgPt alloy as a nanocatalyst for the reduction of 4-nitroaniline and decolorization of rhodamine B: A comparative study. J. Alloys Compd. 2017, 701, 456–464. [Google Scholar] [CrossRef]
- Binod, A.; Ganachari, S.; Yaradoddi, J.; Tapaskar, R.; Banapurmath, N.; Shettar, A. Biological synthesis and characterization of tri- metallic alloy (Au Ag, Sr) nanoparticles and its sensing studies. IOP Conf. Ser. Mater. Sci. Eng. 2018, 376, 012054. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Soleimani, F.; Keshtkar, H.; Nasseri, M.A.; Kazemnejadi, M. Green synthesis of trimetallic oxide nanoparticles and their use as an efficient catalyst for the green synthesis of quinoline and spirooxindoles: Antibacterial, cytotoxicity and anti-colon cancer effects. Inorg. Chem. Commun. 2021, 133, 108923. [Google Scholar] [CrossRef]
- Kannaiyan, S.; Rengaraj, R.; Venkata Krishnan, G.R.; Gayathri, P.K.; Lavanya, G.; Hemapriya, D. Antimicrobial activity of green synthesized tri-metallic oxide Ni/Cr/Cu nanoparticles. J. Niger. Soc. Phys. Sci. 2021, 3, 144–147. [Google Scholar] [CrossRef]
- Dobrucka, R.; Romaniuk-Drapała, A.; Kaczmarek, M. Anti-Leukemia Activity of Au/CuO/ZnO Nanoparticles Synthesized used Verbena officinalis Extract. J. Inorg. Organomet. Polym. Mater. 2020, 31, 191–202. [Google Scholar] [CrossRef]
- Velpula, S.; Beedu, S.; Rupula, K. Biopolymer-based trimetallic nanocomposite synthesis, characterization and its application in the catalytic degradation of 4-nitrophenol. J. Mater. Sci. Mater. Electron. 2022, 33, 2677–2698. [Google Scholar] [CrossRef]
- Siddique, M.; Subhan, W.; Naz, F.; Nawaz, A. Biosynthesis of Highly Porous Ag/Bi/SnO2 Nanohybrid Material Using Seeds Extract of Ceasalpinia Bonduc and Their Photocatalytic Activity. SSRN Electron. J. 2022, 644, 414209. [Google Scholar] [CrossRef]
- Altuner, E.E.; Tiri, R.N.E.H.; Aygun, A.; Gulbagca, F.; Sen, F.; Iranbakhsh, A.; Karimi, F.; Vasseghian, Y.; Dragoi, E.-N. Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: Development of machine learning model. Chem. Eng. Res. Des. 2022, 184, 180–190. [Google Scholar] [CrossRef]
- Tuo, Y.; Liu, G.; Dong, B.; Zhou, J.; Wang, A.; Wang, J.; Jin, R.; Lv, H.; Dou, Z.; Huang, W. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Scientific Reports 2015, 5, 13515. [Google Scholar] [CrossRef]
- Gahlawat, G.; Choudhury, A. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef] [Green Version]
- Hussein, S.; Mahmoud, A.M.; Elgebaly, H.A.; Hendawy, O.M.; Hassanein, E.H.M.; Moustafa, S.M.N.; Alotaibi, N.F.; Nassar, A.M. Green Synthesis of Trimetallic Nanocomposite (Ru/Ag/Pd)-Np and Its In Vitro Antimicrobial and Anticancer Activities. J. Chem. 2022, 2022, 4593086. [Google Scholar] [CrossRef]
- Abdelsattar, A.S.; Kamel, A.G.; El-Shibiny, A. The green production of eco-friendly silver with cobalt ferrite nanocomposite using Citrus limon extract. Results Chem. 2022, 5, 100687. [Google Scholar] [CrossRef]
- Chaturvedi, V.K.; Rai, S.N.; Tabassum, N.; Yadav, N.; Singh, V.; Bohara, R.A.; Singh, M.P. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications. Biochem. Biophys. Rep. 2020, 24, 100812. [Google Scholar] [CrossRef]
- Nie, F.; Ga, L.; Ai, J.; Wang, Y. Trimetallic PdCuAu Nanoparticles for Temperature Sensing and Fluorescence Detection of H2O2 and Glucose. Front. Chem. 2020, 8, 244. [Google Scholar] [CrossRef]
- Ye, X.; He, X.; Lei, Y.; Tang, J.; Yu, Y.; Shi, H.; Wang, K. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles with enhanced catalytic and plasmonic properties as a universal platform for biosensing and cancer theranostics. Chem. Commun. 2019, 55, 2321–2324. [Google Scholar] [CrossRef]
- Gholivand, M.; Jalalvand, A.; Goicoechea, H.; Paimard, G.; Skov, T. Surface exploration of a room-temperature ionic liquid-chitin composite film decorated with electrochemically deposited PdFeNi trimetallic alloy nanoparticles by pattern recognition: An elegant approach to developing a novel biotin biosensor. Talanta 2015, 131, 249–258. [Google Scholar] [CrossRef]
- Song, X.; Gao, H.; Yuan, R.; Xiang, Y. Trimetallic nanoparticle-decorated MXene nanosheets for catalytic electrochemical detection of carcinoembryonic antigen via Exo III-aided dual recycling amplifications. Sens. Actuators B Chem. 2022, 359, 131617. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for Drug Delivery Application: Development of versatile Nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019, 2019, 3702518. [Google Scholar] [CrossRef]
- Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia MN, H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A Review. J. Adv. Res. 2019, 15, 1–18. [Google Scholar] [CrossRef]
- Basavegowda, N.; Patra, J.; Baek, K. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2022, 25, 1058. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; Guan, Z.; Ofoegbu, P.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Silva, L.; Reis, I.; Bonatto, C. Green Synthesis of Metal Nanoparticles by Plants: Current Trends and Challenges. Green Process. Nanotechnol. 2015, 259–275. [Google Scholar] [CrossRef]
- Weng, X.; Jin, X.; Lin, J.; Naidu, R.; Chen, Z. Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol. Eng. 2016, 97, 32–39. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, A.; Kunwar, S.; Bhusal, U.; Alghamdi, S.; Almehmadi, M.; Alhuthali, H.M.; Allahyani, M.; Hossain, M.J.; Hasan, M.A.; Sarker, M.M.R.; et al. Bio-Fabrication of Trimetallic Nanoparticles and Their Applications. Catalysts 2023, 13, 321. https://doi.org/10.3390/catal13020321
Roy A, Kunwar S, Bhusal U, Alghamdi S, Almehmadi M, Alhuthali HM, Allahyani M, Hossain MJ, Hasan MA, Sarker MMR, et al. Bio-Fabrication of Trimetallic Nanoparticles and Their Applications. Catalysts. 2023; 13(2):321. https://doi.org/10.3390/catal13020321
Chicago/Turabian StyleRoy, Arpita, Srijal Kunwar, Utsav Bhusal, Saad Alghamdi, Mazen Almehmadi, Hayaa M. Alhuthali, Mamdouh Allahyani, Md. Jamal Hossain, Md. Abir Hasan, Md. Moklesur Rahman Sarker, and et al. 2023. "Bio-Fabrication of Trimetallic Nanoparticles and Their Applications" Catalysts 13, no. 2: 321. https://doi.org/10.3390/catal13020321