The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Morphology of the Obtained Catalysts
2.2. The Electrochemical Behavior of the Catalysts
3. Materials and Methods
3.1. Chemicals and Materials
3.2. The Preparation of the PtCu/C Catalyst
3.3. The Preparation of the PtNi/C Catalyst
3.4. The Preparation of the PtCo/C Catalyst
3.5. The Preparation of the PtRu/C Catalyst
3.6. The Study of the Catalysts’ Structure
3.7. The Electrochemical Study of the Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Zhao, J.; Li, X. Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2022, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Banham, D.; Ye, S. Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Lett. 2017, 2, 629–638. [Google Scholar] [CrossRef]
- Rossi, K.; Asara, G.G.; Baletto, F. Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction. ACS Catal. 2020, 10, 3911–3920. [Google Scholar] [CrossRef]
- Guo, N.; Xue, H.; Bao, A.; Wang, Z.; Sun, J.; Song, T.; Ge, X.; Zhang, W.; Huang, K.; He, F.; et al. Achieving Superior Electrocatalytic Performance by Surface Copper Vacancy Defects during Electrochemical Etching Process. Angew. Chem. Int. Ed. 2020, 59, 13778–13784. [Google Scholar] [CrossRef] [PubMed]
- Ercolano, G.; Farina, F.; Stievano, L.; Jones, D.J.; Rozière, J.; Cavaliere, S. Preparation of Ni@Pt Core@shell Conformal Nanofibre Oxygen Reduction Electrocatalysts via Microwave-Assisted Galvanic Displacement. Catal. Sci. Technol. 2019, 9, 6920–6928. [Google Scholar] [CrossRef]
- Wang, D.; Xin, H.L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D.A.; Disalvo, F.J.; Abruña, H.D. Structurally Ordered Intermetallic Platinum–Cobalt Core–Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nat. Mater. 2012, 12, 81–87. [Google Scholar] [CrossRef]
- Liu, L.; Liu, H.; Sun, X.; Li, C.; Bai, J. Efficient Electrocatalyst of Pt–Fe/CNFs for Oxygen Reduction Reaction in Alkaline Media. Int. J. Hydrog. Energy. 2020, 45, 15112–15120. [Google Scholar] [CrossRef]
- Wang, X.X.; Swihart, M.T.; Wu, G. Achievements, Challenges and Perspectives on Cathode Catalysts in Proton Exchange Membrane Fuel Cells for Transportation. Nat. Catal. 2019, 2, 578–589. [Google Scholar] [CrossRef]
- Filippov, S.P.; Yaroslavtsev, A.B. Hydrogen Energy: Development Prospects and Materials. Russ. Chem. Rev. 2021, 90, 627–643. [Google Scholar] [CrossRef]
- Lv, H.; Li, D.; Strmcnik, D.; Paulikas, A.P.; Markovic, N.M.; Stamenkovic, V.R. Recent Advances in the Design of Tailored Nanomaterials for Efficient Oxygen Reduction Reaction. Nano Energy 2016, 29, 149–165. [Google Scholar] [CrossRef]
- Yang, H. Platinum-Based Electrocatalysts with Core–Shell Nanostructures. Angew. Chem. Int. Ed. 2011, 50, 2674–2676. [Google Scholar] [CrossRef]
- Markovic, N.M.; Schmidt, T.J.; Stamenkovic, V.R.; Ross, P.N. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells 2001, 1, 105–116. [Google Scholar] [CrossRef]
- Paulus, U.A.; Wokaun, A.; Scherer, G.G.; Schmidt, T.J.; Stamenkovic, V.; Markovic, N.M.; Ross, P.N. Oxygen Reduction on High Surface Area Pt-Based Alloy Catalysts in Comparison to Well Defined Smooth Bulk Alloy Electrodes. Electrochim. Acta 2002, 47, 3787–3798. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Gao, Y. Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell. J. Power Sources 2007, 171, 558–566. [Google Scholar] [CrossRef]
- Colón-Mercado, H.R.; Popov, B.N. Stability of Platinum Based Alloy Cathode Catalysts in PEM Fuel Cells. J. Power Sources 2006, 155, 253–263. [Google Scholar] [CrossRef]
- Pizzutilo, E.; Geiger, S.; Grote, J.-P.; Mingers, A.; Mayrhofer, K.J.J.; Arenz, M.; Cherevko, S. On the Need of Improved Accelerated Degradation Protocols (ADPs): Examination of Platinum Dissolution and Carbon Corrosion in Half-Cell Tests. J. Electrochem. Soc. 2016, 163, F1510–F1514. [Google Scholar] [CrossRef] [Green Version]
- Impagnatiello, A.; Cerqueira, C.F.; Coulon, P.E.; Morin, A.; Escribano, S.; Guetaz, L.; Clochard, M.C.; Rizza, G. Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopy. ACS Appl. Energy Mater. 2020, 3, 2360–2371. [Google Scholar] [CrossRef]
- Khalakhan, I.; Waidhas, F.; Brummel, O.; Vorokhta, M.; Kúš, P.; Yakovlev, Y.V.; Bertram, M.; Dopita, M.; Matolínová, I.; Libuda, J.; et al. Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling. J. Phys. Chem. C 2018, 122, 21974–21982. [Google Scholar] [CrossRef]
- Mani, P.; Srivastava, R.; Strasser, P. Dealloyed Binary PtM3 (M = Cu, Co, Ni) and Ternary PtNi 3M (M = Cu, Co, Fe, Cr) Electrocatalysts for the Oxygen Reduction Reaction: Performance in Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2011, 196, 666–673. [Google Scholar] [CrossRef]
- Jayasayee, K.; van Veen, J.A.R.; Manivasagam, T.G.; Celebi, S.; Hensen, E.J.M.; de Bruijn, F.A. Oxygen Reduction Reaction (ORR) Activity and Durability of Carbon Supported PtM (Co, Ni, Cu) Alloys: Influence of Particle Size and Non-Noble Metals. Appl. Catal. B 2012, 111–112, 515–526. [Google Scholar] [CrossRef]
- Sorsa, O.; Romar, H.; Lassi, U.; Kallio, T. Co-Electrodeposited Mesoporous PtM (M = Co, Ni, Cu) as an Active Catalyst for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell. Electrochim. Acta 2017, 230, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Ortíz-Herrera, J.C.; Tellez-Cruz, M.M.; Solorza-Feria, O.; Medina, D.I. Effect of Different Carbon Supports on the Activity of PtNi Bimetallic Catalysts toward the Oxygen Reduction. Catalysts 2022, 12, 477. [Google Scholar] [CrossRef]
- Wang, Q.; Mi, B.; Zhou, J.; Qin, Z.; Chen, Z.; Wang, H. Hollow-Structure Pt-Ni Nanoparticle Electrocatalysts for Oxygen Reduction Reaction. Molecules 2022, 27, 2524. [Google Scholar] [CrossRef] [PubMed]
- Azizi, J.; Kamyabi, M.A. Pulse-Electrodeposition of PtNi Nanoparticles on a Novel Substrate of Multi-Walled Carbon Nanotubes/Poly(Eriochrome Blue-Black B) as an Active and Durable Catalyst for the Electrocatalytic Oxidation of Methanol. J. Electroanal. Chem. 2022, 920, 116642. [Google Scholar] [CrossRef]
- Ouyang, C.; Xun, D.; Jian, G. N-Doped and Sulfonated Reduced Graphene Oxide Supported PtNi Nanoparticles as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Coatings 2022, 12, 1049. [Google Scholar] [CrossRef]
- Stamenković, V.; Schmidt, T.J.; Ross, P.N.; Marković, N.M. Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces. J. Phys. Chem. B 2002, 106, 11970–11979. [Google Scholar] [CrossRef] [Green Version]
- Beard, B.C.; Ross, P.N. The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts. J. Electrochem. Soc. 1990, 137, 3368–3374. [Google Scholar] [CrossRef]
- Mauer, D.; Belenov, S.; Guterman, V.; Nikolsky, A.; Kozakov, A.; Nikulin, A.; Alexeenko, D.; Safronenko, O. Gram-Scale Synthesis of CoO/C as Base for PtCo/C High-Performance Catalysts for the Oxygen Reduction Reaction. Catalysts 2021, 11, 1539. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, S.; Liao, W.; Wang, Z.; Long, J.; Zhou, Q.; Wang, Q. Ordered PtCo Intermetallics Featuring Nitrogen-Doped Carbon Prepared by Surface Coating Strategy for Oxygen Reduction Reaction. ChemElectroChem 2022, 9, e202200803. [Google Scholar] [CrossRef]
- Daimon, H.; Yamazaki, S.I.; Asahi, M.; Ioroi, T.; Inaba, M. A Strategy for Drastic Improvement in the Durability of Pt/C and PtCo/C Alloy Catalysts for the Oxygen Reduction Reaction by Melamine Surface Modification. ACS Catal. 2022, 12, 8976–8985. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Y.; Dai, C.; Cheng, D. Enhanced Oxygen Reduction Activity of PtCu Nanoparticles by Morphology Tuning and Transition-Metal Doping. Int. J. Hydrog. Energy 2020, 45, 4427–4434. [Google Scholar] [CrossRef]
- Barim, S.B.; Bozbag, S.E.; Deljoo, B.; Aindow, M.; Erkey, C. Highly Active Carbon Supported PtCu Electrocatalysts for PEMFCs by in Situ Supercritical Deposition Coupled with Electrochemical Dealloying. Fuel Cells 2020, 20, 285–299. [Google Scholar] [CrossRef]
- Oezaslan, M.; Hasché, F.; Strasser, P. PtCu3, PtCu and Pt3Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media. J. Electrochem. Soc. 2012, 159, B444. [Google Scholar] [CrossRef]
- Caballero-Manrique, G.; Brillas, E.; Centellas, F.; Garrido, J.A.; Rodríguez, R.M.; Cabot, P.L. Electrochemical Oxidation of the Carbon Support to Synthesize Pt(Cu) and Pt-Ru(Cu) Core-Shell Electrocatalysts for Low-Temperature Fuel Cells. Catalysts 2015, 5, 815–837. [Google Scholar] [CrossRef] [Green Version]
- Bele, M.; Gatalo, M.; Jovanovič, P.; Ruiz-Zepeda, F.; Šala, M.; Šest, E.; Hodnik, N.; Hočevar, S.; Gatto, I.; Saccà, A.; et al. Insight on Single Cell Proton Exchange Membrane Fuel Cell Performance of Pt-Cu/C Cathode. Catalysts 2019, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Pavlets, A.; Alekseenko, A.; Menshchikov, V.; Belenov, S.; Volochaev, V.; Pankov, I.; Safronenko, O.; Guterman, V. Influence of Electrochemical Pretreatment Conditions of PtCu/C Alloy Electrocatalyst on Its Activity. Nanomaterials 2021, 11, 1499. [Google Scholar] [CrossRef]
- Menshchikov, V.; Alekseenko, A.; Guterman, V.; Nechitailov, A.; Glebova, N.; Tomasov, A.; Spiridonova, O.; Belenov, S.; Zelenina, N.; Safronenko, O. Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell. Nanomaterials 2020, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Long, N.V.; Yang, Y.; Minh Thi, C.; van Minh, N.; Cao, Y.; Nogami, M. The Development of Mixture, Alloy, and Core-Shell Nanocatalysts with Nanomaterial Supports for Energy Conversion in Low-Temperature Fuel Cells. Nano Energy 2013, 2, 636–676. [Google Scholar] [CrossRef]
- Kaewsai, D.; Hunsom, M. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell. Nanomaterials 2018, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Ochal, P.; Gomez De La Fuente, J.L.; Tsypkin, M.; Seland, F.; Sunde, S.; Muthuswamy, N.; Rønning, M.; Chen, D.; Garcia, S.; Alayoglu, S.; et al. CO Stripping as an Electrochemical Tool for Characterization of Ru@Pt Core-Shell Catalysts. J. Electroanal. Chem. 2011, 655, 140–146. [Google Scholar] [CrossRef]
- Petrii, O.A. Pt–Ru Electrocatalysts for Fuel Cells: A Representative Review. J. Solid State Electrochem. 2008, 12, 609–642. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Kukueva, E.V.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021, 11, 1469. [Google Scholar] [CrossRef]
- Tuo, Y.; Lu, Q.; Chen, C.; Liu, T.; Pan, Y.; Zhou, Y.; Zhang, J. The Facile Synthesis of Core–Shell PtCu Nanoparticles with Superior Electrocatalytic Activity and Stability in the Hydrogen Evolution Reaction. RSC Adv. 2021, 11, 26326–26335. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cardona, J.; Sirés, I.; Alcaide, F.; Brillas, E.; Centellas, F.; Cabot, P.L. Electrochemical Performance of Carbon-Supported Pt(Cu) Electrocatalysts for Low-Temperature Fuel Cells. Int. J. Hydrog. Energy 2020, 45, 20582–20593. [Google Scholar] [CrossRef]
- Baturina, O.A.; Aubuchon, S.R.; Wynne, K.J. Thermal Stability in Air of Pt/C Catalysts and PEM Fuel Cell Catalyst Layers. Chem. Mater. 2006, 18, 1498–1504. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. Thermal Degradation of the Support in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. Carbon 2005, 43, 179–188. [Google Scholar] [CrossRef]
- Sellin, R.; Clacens, J.M.; Coutanceau, C. A Thermogravimetric Analysis/Mass Spectroscopy Study of the Thermal and Chemical Stability of Carbon in the Pt/C Catalytic System. Carbon 2010, 48, 2244–2254. [Google Scholar] [CrossRef]
- Leontyev, I.N.; Leontyeva, D.V.; Kuriganova, A.B.; Popov, Y.V.; Maslova, O.A.; Glebova, N.V.; Nechitailov, A.A.; Zelenina, N.K.; Tomasov, A.A.; Hennet, L.; et al. Characterization of the Electrocatalytic Activity of Carbon-Supported Platinum-Based Catalysts by Thermal Gravimetric Analysis. Mendeleev Commun. 2015, 25, 468–469. [Google Scholar] [CrossRef]
- Guterman, V.E.; Belenov, S.V.; Krikov, V.V.; Vysochina, L.L.; Yohannes, W.; Tabachkova, N.Y.; Balakshina, E.N. Reasons for the Differences in the Kinetics of Thermal Oxidation of the Support in Pt/C Electrocatalysts. J. Phys. Chem. C 2014, 118, 23835–23844. [Google Scholar] [CrossRef]
- Kulbakov, A.A.; Kuriganova, A.B.; Allix, M.; Rakhmatullin, A.; Smirnova, N.V.; Maslova, O.A.; Leontyev, I.N. Non-Isothermal Decomposition of Platinum Acetylacetonate as a Cost-Efficient and Size-Controlled Synthesis of Pt/C Nanoparticles. Catal. Commun. 2018, 117, 14–18. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Y.; Xin, H.L.; Hovden, R.; Ercius, P.; Mundy, J.A.; Chen, H.; Richard, J.H.; Muller, D.A.; DiSalvo, F.J.; et al. Tuning Oxygen Reduction Reaction Activity via Controllable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts. Nano Lett. 2012, 12, 5230–5238. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Wang, F. Synthesis and Characterization of Cu@Pt/C Core-Shell Structured Catalysts for Proton Exchange Membrane Fuel Cell. Int. J. Hydrog. Energy 2011, 36, 9151–9154. [Google Scholar] [CrossRef]
- Ruiz-Zepeda, F.; Gatalo, M.; Pavlišič, A.; Dražić, G.; Jovanovič, P.; Bele, M.; Gaberšček, M.; Hodnik, N. Atomically Resolved Anisotropic Electrochemical Shaping of Nano-Electrocatalyst. Nano Lett. 2019, 19, 4919–4927. [Google Scholar] [CrossRef] [Green Version]
- Rudi, S.; Cui, C.; Gan, L.; Strasser, P. Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-Stripping Voltammetry. Electrocatalysis 2014, 5, 408–418. [Google Scholar] [CrossRef]
- Gatalo, M.; Moriau, L.; Petek, U.; Ruiz-Zepeda, F.; Šala, M.; Grom, M.; Galun, T.; Jovanovič, P.; Pavlišič, A.; Bele, M.; et al. CO-Assisted Ex-Situ Chemical Activation of Pt-Cu/C Oxygen Reduction Reaction Electrocatalyst. Electrochim. Acta 2019, 306, 377–386. [Google Scholar] [CrossRef]
- van der Vliet, D.F.; Wang, C.; Li, D.; Paulikas, A.P.; Greeley, J.; Rankin, R.B.; Strmcnik, D.; Tripkovic, D.; Markovic, N.M.; Stamenkovic, V.R. Unique Electrochemical Adsorption Properties of Pt-Skin Surfaces. Angew. Chem. Int. Ed. 2012, 51, 3139–3142. [Google Scholar] [CrossRef]
- Urchaga, P.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Electro-Oxidation of CO Chem on Pt Nanosurfaces: Solution of the Peak Multiplicity Puzzle. Langmuir 2012, 28, 3658–3663. [Google Scholar] [CrossRef]
- López-Cudero, A.; Cuesta, A.; Gutiérrez, C. Potential Dependence of the Saturation CO Coverage of Pt Electrodes: The Origin of the Pre-Peak in CO-Stripping Voltammograms. Part 1: Pt(1 1 1). J. Electroanal. Chem. 2005, 579, 1–12. [Google Scholar] [CrossRef]
- Zamanzad Ghavidel, M.R.; Monteverde Videla, A.H.A.; Specchia, S.; Easton, E.B. The Relationship between the Structure and Ethanol Oxidation Activity of Pt-Cu/C Alloy Catalysts. Electrochim. Acta 2017, 230, 58–72. [Google Scholar] [CrossRef]
- Pavko, L.; Gatalo, M.; Križan, G.; Križan, J.; Ehelebe, K.; Ruiz-Zepeda, F.; Šala, M.; Dražić, G.; Geuß, M.; Kaiser, P.; et al. Toward the Continuous Production of Multigram Quantities of Highly Uniform Supported Metallic Nanoparticles and Their Application for Synthesis of Superior Intermetallic Pt-Alloy ORR Electrocatalysts. ACS Appl Energy Mater 2021, 4, 13819–13829. [Google Scholar] [CrossRef]
- Hodnik, N.; Bele, M.; Rečnik, A.; Logar, N.Z.; Gaberšček, M.; Hočevar, S. Enhanced Oxygen Reduction and Methanol Oxidation Reaction Activities of Partially Ordered PtCu Nanoparticles. Energy Procedia 2012, 29, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Jiang, G.; Cano, Z.P.; Ma, Z.; Chen, Z. Spontaneous Weaving: 3D Porous PtCu Networks with Ultrathin Jagged Nanowires for Highly Efficient Oxygen Reduction Reaction. Appl. Catal. B 2018, 236, 359–367. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Y.W.; Jin, Z.; Chen, C.; Li, H.; Cai, W. bin Alternative Aqueous Phase Synthesis of a PtRu/C Electrocatalyst for Direct Methanol Fuel Cells. Catalysts 2021, 11, 925. [Google Scholar] [CrossRef]
- Kim, I.; Bong, S.; Woo, S.; Mahajan, R.K.; Kim, H. Highly Active 40 Wt.% PtRu/C Anode Electrocatalysts for PEMFCs Prepared by an Improved Impregnation Method. Int. J. Hydrog. Energy 2011, 36, 1803–1812. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, X.; Han, Y.; Shen, L.; Yin, S.; Li, G.; Jiang, Y.; Sun, S. Engineering PtRu Bimetallic Nanoparticles with Adjustable Alloying Degree for Methanol Electrooxidation: Enhanced Catalytic Performance. Appl. Catal. B 2020, 263, 118345. [Google Scholar] [CrossRef]
- Iwasita, T. Electrocatalysis of Methanol Oxidation. Electrochim. Acta 2002, 47, 3663–3674. [Google Scholar] [CrossRef]
- Więckowski, A. Interfacial Electrochemistry: Theory, Experiment, and Applications; Marcel Dekker: New York, NY, USA; CRC Press: New York, NY, USA, 1999; Chapter 47. [Google Scholar]
- Vielstich, W.; Gasteiger, H.A.; Yokokawa, H. (Eds.) Handbook of Fuel Cells: Advances in Electrocatalysis, Material, Diagnostics and Durability; Wiley: New York, NY, USA, 2009; 1090p. [Google Scholar]
- Petrii, O.A. The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review). Russ. J. Electrochem. 2019, 55, 1–33. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Khalaf, M.M.; Alnajjar, A.O.; Mohamed, I.M.A. Facile synthesis of Co/Ni bi-metallic phosphate as electrode material for urea fuel cells: Effect of synthetic strategy on the physicochemical and electrocatalytic behavior. Fuel 2023, 334, 126671. [Google Scholar] [CrossRef]
- Perales-Rondón, J.V.; Solla-Gullón, J.; Herrero, E.; Sánchez-Sánchez, C.M. Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles. Appl. Catal. B Environ. 2017, 201, 48–57. [Google Scholar] [CrossRef]
- Pushkarev, A.S.; Pushkareva, I.V.; Ivanova, N.A.; du Preez, S.P.; Bessarabov, D.; Chumakov, R.G.; Stankevich, V.G.; Fateev, V.N.; Evdokimov, A.A.; Grigoriev, S.A. Pt/C and Pt/SnOx/C Catalysts for Ethanol Electrooxidation: Rotating Disk Electrode Study. Catalysts 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Menshikov, V.; Paperzh, K.; Bayan, Y.; Beskopylny, Y.; Nikulin, A.; Pankov, I.; Belenov, S. The Development of High-Performance Platinum-Ruthenium Catalysts for the Methanol Oxidation Reaction: Gram-Scale Synthesis, Composition, Morphology, and Functional Characteristics. Catalysts 2022, 12, 1257. [Google Scholar] [CrossRef]
- Pavlets, A.S.; Alekseenko, A.A.; Tabachkova, N.Y.; Safronenko, O.I.; Nikulin, A.Y.; Alekseenko, D.V.; Guterman, V.E. A Novel Strategy for the Synthesis of Pt–Cu Uneven Nanoparticles as an Efficient Electrocatalyst toward Oxygen Reduction. Int. J. Hydrog. Energy 2021, 46, 5355–5368. [Google Scholar] [CrossRef]
Sample | ω (Pt + M), wt.% | ω (Pt), wt.% | Dav, nm (XRD) | Crystal Lattice Parameter, Å | Composition (XRD) | Composition (XRF) |
---|---|---|---|---|---|---|
PtCu/C | 30.2 | 22.8 | 2.3 | 3.857 | PtCu0.3 | PtCu1.0 |
PtNi/C | 23.7 | 20.1 | 2.6 | 3.848 | PtNi0.3 | PtNi0.6 |
PtCo/C | 16.6 | 14.0 | 2.4 | 3.893 | PtCo0.1 | PtCo0.6 |
PtRu/C | 27.2 | 19.2 | <1.0 | - | - | PtRu0.8 |
Sample | ESA, m2 g–1 (Pt) H | I, mA | I, A m–2 (Pt) | E1/2, V | Number, ē |
---|---|---|---|---|---|
PtCu/C | 22 | 1.7 | 15.8 | 0.92 | 4.0 |
PtNi/C | 21 | 1.6 | 17.4 | 0.92 | 3.7 |
PtCo/C | 32 | 0.3 | 3.4 | 0.87 | 4.7 |
PtRu/C | 104 (by CO) | 0.3 | 0.6 | 0.87 | 3.4 |
Pt/C | 66 | 0.9 | 2.8 | 0.90 | 3.8 |
Sample | CV | Chronoamperometry at E = 0.6 V | |||
---|---|---|---|---|---|
Imax, A g–1 (Pt) | Eonset, V | Iinitial, A m–2 | Ifinal, A m–2 | Deactivation Rate | |
PtCu/C | 417 | 0.5 | 0.4 | 0.18 | 0.22 |
PtNi/C | 587 | 0.5 | 0.5 | 0.16 | 0.40 |
PtCo/C | 759 | 0.5 | 0.7 | 0.35 | 0.34 |
PtRu/C | 870 | 0.4 | 0.7 | 0.45 | 0.23 |
Pt/C | 350 | 0.5 | 0.7 | 0.26 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belenov, S.; Pavlets, A.; Paperzh, K.; Mauer, D.; Menshikov, V.; Alekseenko, A.; Pankov, I.; Tolstunov, M.; Guterman, V. The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability. Catalysts 2023, 13, 243. https://doi.org/10.3390/catal13020243
Belenov S, Pavlets A, Paperzh K, Mauer D, Menshikov V, Alekseenko A, Pankov I, Tolstunov M, Guterman V. The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability. Catalysts. 2023; 13(2):243. https://doi.org/10.3390/catal13020243
Chicago/Turabian StyleBelenov, Sergey, Angelina Pavlets, Kirill Paperzh, Dmitry Mauer, Vladislav Menshikov, Anastasia Alekseenko, Ilia Pankov, Mikhail Tolstunov, and Vladimir Guterman. 2023. "The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability" Catalysts 13, no. 2: 243. https://doi.org/10.3390/catal13020243
APA StyleBelenov, S., Pavlets, A., Paperzh, K., Mauer, D., Menshikov, V., Alekseenko, A., Pankov, I., Tolstunov, M., & Guterman, V. (2023). The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability. Catalysts, 13(2), 243. https://doi.org/10.3390/catal13020243