Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Properties of LCO and Catalyst Samples
2.2. Reactivity of S Compounds of LCO in HDS over CoMoS and NiMoS Catalyst
2.3. Reactivity of N Compounds of LCO in HDS over CoMoS and NiMoS Catalyst
2.4. HDS and HDN Reaction Mechanism of Model Feed over NiMoS Catalyst
- (1)
- HDN of CBZ
3. Experimental
3.1. Materials
3.2. Characterization of Catalyst
3.3. Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Hsu, C.; Mochida, I. Chemistry of Diesel Fuels; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Corma, A.; Alfarob, V.; Orchillés, A. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil. J. Catal. 2001, 200, 34–44. [Google Scholar] [CrossRef]
- Yun, G.-N.; Cho, K.-S.; Kim, Y.-S.; Lee, Y.-K. A New Approach to Deep Desulfurization of Light Cycle Oil over Ni2P Catalysts: Combined Selective Oxidation and Hydrotreating. Catalysts 2018, 8, 102. [Google Scholar] [CrossRef]
- Cho, K.-S.; Lee, Y.-K. Effects of nitrogen compounds, aromatics, and aprotic solvents on the oxidative desulfurization (ODS) of light cycle oil over Ti-SBA-15 catalyst. Appl. Catal. B Environ. 2014, 147, 35–42. [Google Scholar] [CrossRef]
- Laredo, G.; Pérez-Romo, P.; Escobar, J.; Garcia-Gutierrez, J.; Vega-Merino, P. Light Cycle Oil Upgrading to Benzene, Toluene, and Xylenes by Hydrocracking: Studies Using Model Mixtures. Ind. Eng. Chem. Res. 2017, 56, 10939–10948. [Google Scholar] [CrossRef]
- Laredo, G.; Merino, P.V.; Hernández, P. Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review. Ind. Eng. Chem. Res. 2018, 57, 7315–7321. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Cho, K.-S.; Lee, Y.-K. Morphology effect of β-zeolite supports for Ni2P catalysts on the hydrocracking of polycyclic aromatic hydrocarbons to benzene, toluene, and xylene. J. Catal. 2017, 351, 67–78. [Google Scholar] [CrossRef]
- Oh, Y.; Shin, J.; Noh, H.; Kim, C.; Kim, Y.-S.; Lee, Y.-K.; Lee, J.K. Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons. Appl. Catal. A Gen. 2019, 577, 86–98. [Google Scholar] [CrossRef]
- Tao, L.; Fairley, D.; Kleeman, M.J.; Harley, R.A. Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area. Environ. Sci. Technol. 2013, 47, 10171–10178. [Google Scholar] [CrossRef]
- Deniz, C.; Zincir, B. Environmental and economical assessment of alternative marine fuels. J. Clean. Prod. 2016, 113, 438–449. [Google Scholar] [CrossRef]
- Song, C.; Ma, X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B Environ. 2003, 41, 207–238. [Google Scholar] [CrossRef]
- Azizi, N.; Ali, S.; Alhooshani, K.; Kim, T.; Lee, Y.; Park, J.I.; Miyawaki, J.; Yoon, S.; Mochida, I. Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Process. Technol. 2013, 109, 172–178. [Google Scholar] [CrossRef]
- Yun, G.-N.; Lee, Y.-K. Dispersion effects of Ni2P catalysts on hydrotreating of light cycle oil. Appl. Catal. B Environ. 2014, 150–151, 647–655. [Google Scholar] [CrossRef]
- Oyama, S.T.; Lee, Y.-K. Mechanism of Hydrodenitrogenation on Phosphides and Sulfides. J. Phys. Chem. B 2005, 109, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Furimsky, E.; Massoth, F. Hydrodenitrogenation of Petroleum. Catal. Rev. 2005, 47, 297–489. [Google Scholar] [CrossRef]
- Laredo, G.; Altamirano, E.; De los Reyes, J. Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene. Appl. Catal. A Gen. 2003, 242, 311–320. [Google Scholar] [CrossRef]
- Fu, C.; Schaffer, A. Effect of nitrogen compounds on cracking catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 68–75. [Google Scholar] [CrossRef]
- Kwak, C.; Lee, J.; Bae, J.; Moon, S. Poisoning effect of nitrogen compounds on the performance of CoMoS/Al2O3 catalyst in the hydrodesulfurization of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene. Appl. Catal. B Environ. 2001, 35, 59–68. [Google Scholar] [CrossRef]
- Nylén, U.; Delgado, J.; Järås, S.; Boutonnet, M. Characterization of alkylated aromatic sulphur compounds in light cycle oil from hydrotreated vacuum gas oil using GC-SCD. Fuel Process. Technol. 2004, 86, 223–234. [Google Scholar] [CrossRef]
- Li, M.; Larter, S.; Stoddart, D.; Bjoroey, M. Liquid chromatographic separation schemes for pyrrole and pyridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical samples. Anal. Chem. 1992, 64, 1337–1344. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Zuo, C.; Zheng, S.; Xu, F.; Sun, Y.; Zhang, Q. The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical. Int. J. Mol. Sci. 2019, 20, 5420. [Google Scholar] [CrossRef]
- Dorbon, M.; Ignatiadis, I.; Schmitter, J.-M.; Arpino, P.; Guiochon, G.; Toulhoat, H.; Huc, A. Identification of carbazoles and benzocarbazoles in a coker gas oil and influence of catalytic hydrotreatment on their distribution. Fuel 1984, 63, 565–570. [Google Scholar] [CrossRef]
- Ma, X.; Sakanishi, K.; Mochida, I. Hydrodesulfurization Reactivities of Various Sulfur Compounds in Diesel Fuel. Ind. Eng. Chem. Res. 1994, 33, 218–222. [Google Scholar] [CrossRef]
- Kilanowski, D.; Teeuwen, H.; de Beer, V.; Gates, B.; Schuit, G.; Kwart, H. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoOMoO3γ-Al2O3: Low-pressure reactivity studies. J. Catal. 1978, 55, 129–137. [Google Scholar] [CrossRef]
- Pérot, G. Hydrotreating catalysts containing zeolites and related materials—Mechanistic aspects related to deep desulfurization. Catal. Today 2003, 86, 111–128. [Google Scholar] [CrossRef]
- Breysse, M.; Djega-Mariadassou, G.; Pessayre, S.; Geantet, C.; Vrinat, M.; Pérot, G.; Lemaire, M. Deep desulfurization: Reactions, catalysts and technological challenges. Catal. Today 2003, 84, 129–138. [Google Scholar] [CrossRef]
- Song, C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 2003, 86, 211–263. [Google Scholar] [CrossRef]
- Laredo, G.; Montesinos, A.; De Los Reyes, J. Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. Appl. Catal. A Gen. 2004, 265, 171–183. [Google Scholar] [CrossRef]
- García-Martínez, J.; Castillo-Araiza, C.; De los Reyes Heredia, J.; Trejo, E.; Montesinos, A. Kinetics of HDS and of the inhibitory effect of quinoline on HDS of 4,6-DMDBT over a Ni-Mo-P/Al 2O 3 catalyst: Part I. Chem. Eng. J. 2012, 210, 53–62. [Google Scholar] [CrossRef]
- Finiels, A.; Geneste, P.; Moulinas, C.; Olive, J. Hydroprocessing of secondary amines over NiW-Al2O3 Catalyst. Appl. Catal. 1986, 22, 257–262. [Google Scholar] [CrossRef]
- Szymańska, A.; Lewandowski, M.; Sayag, C.; Djéga-Mariadassou, G. Kinetic study of the hydrodenitrogenation of carbazole over bulk molybdenum carbide. J. Catal. 2003, 218, 24–31. [Google Scholar] [CrossRef]
- Nagai, M.; Goto, Y.; Irisawa, A.; Omi, S. Catalytic Activity and Surface Properties of Nitrided Molybdena–Alumina for Carbazole Hydrodenitrogenation. J. Catal. 2000, 191, 128–137. [Google Scholar] [CrossRef]
- Zepeda, T.; Pawelec, B.; Obeso-Estrella, R.; de León, J.D.; Fuentes, S.; Alonso-Núñez, G.; Fierro, J. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Appl. Catal. B Environ. 2016, 180, 569–579. [Google Scholar] [CrossRef]
- Kagami, N.; Vogelaar, B.; van Langeveld, A.; Moulijn, J. Reaction pathways on NiMo/Al2O3 catalysts for hydrodesulfurization of diesel fuel. Appl. Catal. A Gen. 2005, 293, 11–23. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, Y.-K. Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts. Catalysts 2023, 13, 277. https://doi.org/10.3390/catal13020277
Kim J, Lee Y-K. Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts. Catalysts. 2023; 13(2):277. https://doi.org/10.3390/catal13020277
Chicago/Turabian StyleKim, Jihyun, and Yong-Kul Lee. 2023. "Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts" Catalysts 13, no. 2: 277. https://doi.org/10.3390/catal13020277
APA StyleKim, J., & Lee, Y.-K. (2023). Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts. Catalysts, 13(2), 277. https://doi.org/10.3390/catal13020277

