You are currently on the new version of our website. Access the old version .
CatalystsCatalysts
  • Article
  • Open Access

30 November 2023

Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports: Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate

,
,
,
,
,
and
1
Research and Development Department, Kisuma Chemicals, Billitonweg 7, 9641 KZ Veendam, The Netherlands
2
King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
3
Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
4
Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
This article belongs to the Section Catalytic Materials

Abstract

Two multifunctional catalytic systems comprising Sn-based/doped crystalline zeolite Beta were synthesized, and they were employed as heterogeneous catalysts in the selective conversion of glycerol to methyl lactate. The first catalytic system, named Au-Pd-Sn-deAl-7.2-Beta-DP, was created through the post-synthesis dealumination of the parent zeolite Beta (Si/Al = 10) using 7.2 M HNO3. Subsequently, it was grafted with 27 mmol of SnCl4, resulting in Sn-deAl-7.2-Beta. Following this, Au and Pd nanoparticles were supported on this catalyst using the deposition–precipitation (DP) method. The second catalytic system was a physical mixture of Au and Pd nanoparticles supported on functionalized carbon nanotubes (Au-Pd-F-CNTs) and Sn-containing zeolite Beta (Sn-deAl-7.2-Beta). Both catalytic systems were employed in glycerol partial oxidation to methyl lactate under the following conditions: 140 °C for 4.5 h under an air pressure of 30 bar. The Au-Pd-Sn-deAl-7.2-Beta-DP catalytic system demonstrated 34% conversion of glycerol with a 76% selectivity for methyl lactate. In contrast, the physical mixture of Au-Pd-F-CNTs and Sn-deAl-7.2-Beta exhibited higher activity, achieving 58% glycerol conversion and a nearly identical selectivity for methyl lactate (77%). The catalytic results and catalyst structure were further analyzed using various characterization techniques, such as X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), X-ray fluorescence (XRF), transmission electron microscopy (TEM), UV-vis spectroscopy, and pyridine Fourier transform infrared (FTIR). These analyses emphasized the significance of adjusting the quantity of active sites, particle size, and active sites proximity under the chosen reaction conditions.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.