Ce1−xSnxO2 Catalysts Prepared with Combustion Method for Catalytic Combustion of Ethyl Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD
2.2. SEM and BET Results
2.3. TEM Results
2.4. H2-TPR Results
2.5. XPS Results
2.6. Catalytic Activity
3. Experimental
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Konsolakis, M.; Carabineiro, S.a.C.; Marnellos, G.E.; Asad, M.F.; Soares, O.S.G.P.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorg. Chim. Acta 2017, 455, 473–482. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review. Appl. Catal. B. 2021, 281, 119447. [Google Scholar] [CrossRef]
- Li, X.; Niu, Y.; Su, H.; Qi, Y. Simple Thermocatalytic Oxidation Degradation of VOCs. Catal. Lett. 2022, 152, 1801–1818. [Google Scholar] [CrossRef]
- Carabineiro, S.A.; Konsolakis, M.; Marnellos, G.E.; Asad, M.F.; Soares, O.S.; Tavares, P.B.; Pereira, M.F.; Órfão, J.J.; Figueiredo, J.L. Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules 2016, 21, 644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, Z.; Li, H.; Yan, L.; Yang, Y.; Wang, Y.; Duan, J.; Li, L.; Chai, F.; Cheng, M.; et al. Ambient volatile organic compounds pollution in China. J. Environ. Sci. 2017, 55, 69–75. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Zang, M.; Zhao, C.; Wang, Y.; Chen, S. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J. Saudi Chem. Soc. 2019, 23, 645–654. [Google Scholar] [CrossRef]
- Ye, Y.; Gao, L.; Xu, J.; Wang, L.; Mo, L.; Zhang, X. Effect of CuO species and oxygen vacancies over CuO/CeO2 catalysts on low-temperature oxidation of ethyl acetate. J. Rare Earths 2023, 41, 862–869. [Google Scholar] [CrossRef]
- Deng, L.; Ding, Y.; Duan, B.; Chen, Y.; Li, P.; Zhu, S.; Shen, S. Catalytic deep combustion characteristics of benzene over cobalt doped Mn-Ce solid solution catalysts at lower temperatures. Mol. Catal. 2018, 446, 72–80. [Google Scholar] [CrossRef]
- Li, W.B.; Wang, J.X.; Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009, 148, 81–87. [Google Scholar] [CrossRef]
- Li, Z.; Yi, J. Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method. Sens. Actuators B Chem. 2017, 243, 96–103. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, X.; Peng, H.; Fang, X.; Liu, W.; Ying, J.; Yu, F.; Wang, X. SnO2-based solid solutions for CH4 deep oxidation: Quantifying the lattice capacity of SnO2 using an X-ray diffraction extrapolation method. Chin. J. Catal. 2016, 37, 1293–1302. [Google Scholar] [CrossRef]
- Pan, H.; Jian, Y.; Chen, C.; He, C.; Hao, Z.; Shen, Z.; Liu, H. Sphere-shaped Mn3O4 Catalyst with Remarkable Low-temperature Activity for Methyl–ethyl–ketone Combustion. Environ. Sci. Technol. 2017, 51, 6288. [Google Scholar] [CrossRef]
- Delimaris, D.; Ioannides, T. VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl. Catal. B. 2008, 84, 303–312. [Google Scholar] [CrossRef]
- Kuntaiah, K.; Sudarsanam, P.; Reddy, B.M.; Vinu, A. Nanocrystalline Ce1−xSmxO2−δ (x = 0.4) solid solutions: Structural characterization versus CO oxidation. RSC Adv. 2013, 3, 7953–7962. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, X.; Sun, K. Catalytic combustion of ethyl acetate on supported copper oxide catalysts. J. Hazard. Mater. 2007, 139, 140–145. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, Z.; Wen, J.; Ding, K.; Yang, X.; Poeppelmeier, K.R.; Marks, L.D. Adhesion and Atomic Structures of Gold on Ceria Nanostructures: The Role of Surface Structure and Oxidation State of Ceria Supports. Nano Lett. 2015, 15, 5375–5381. [Google Scholar] [CrossRef]
- Liu, C.; Xian, H.; Jiang, Z.; Wang, L.; Zhang, J.; Zheng, L.; Tan, Y.; Li, X. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Appl. Catal. B 2015, 176–177, 542–552. [Google Scholar] [CrossRef]
- Kumar, K.B.S.; Deshpande, P.A. On Identification of Labile Oxygen in Ceria-Based Solid Solutions: Which Oxygen Leaves the Lattice? J. Phys. Chem. C 2015, 119, 8692–8702. [Google Scholar] [CrossRef]
- El Desouky, F.G.; Saadeldin, M.M.; El Zawawi, I.K. Synthesis and tuning the structure, morphological, optical, and photoluminescence properties of heterostructure cerium oxide and tin oxide nanocomposites. J. Lumin. 2022, 241, 118450. [Google Scholar] [CrossRef]
- Sk, M.A.; Kozlov, S.M.; Lim, K.H.; Migani, A.; Neyman, K.M. Oxygen vacancies in self-assemblies of ceria nanoparticles. J. Mater. Chem. A 2014, 2, 18329–18338. [Google Scholar] [CrossRef]
- Xu, S.; Cao, Y.; Liu, Z. Dimethyl carbonate synthesis from CO2 and methanol over CeO2-ZrO2 catalyst. Catal. Commun. 2022, 162, 106397. [Google Scholar] [CrossRef]
- Mishra, U.K.; Chandel, V.S.; Singh, O.P.; Alam, N. Synthesis of CeO2 and Zr-Doped CeO2 (Ce1−xZrxO2) Catalyst by Green Synthesis for Soot Oxidation Activity. Arab. J. Sci. Eng. 2023, 48, 771–777. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W. A novel method for the synthesis of CexZr1−XO2 solid solution with high purity of κappa phase and excellent reactive activity. Catal. Today 2019, 327, 262–270. [Google Scholar] [CrossRef]
- Xue, Y.-J.; Liu, H.-B.; Lan, M.-M.; Li, J.-S.; Li, H. Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2 nanocomposite coating. Surf. Coat. Technol. 2010, 204, 3539–3545. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, Q. SnO2 modified Ce–Ti–Ox catalyst for the selective catalytic reduction of NOx with NH3. React. Kinet. Mech. Catal. 2016, 117, 119–128. [Google Scholar] [CrossRef]
- Du, J.; Qu, Z.; Dong, C.; Song, L.; Qin, Y.; Huang, N. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl. Surf. Sci. 2018, 433, 1025–1035. [Google Scholar] [CrossRef]
- Hu, F.; Chen, J.; Zhao, S.; Li, K.; Si, W.; Song, H.; Li, J. Toluene catalytic combustion over copper modified Mn0.5Ce0.5 Ox solid solution sponge-like structures. Appl. Catal. A-Gen. 2017, 540, 57–67. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Sun, H.; Qiu, J.; Men, Y. Highly improved soot combustion performance over synergetic MnxCe1−xO2 solid solutions within mesoporous nanosheets. J. Colloid Interface Sci. 2020, 577, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Xiong, Y.; Zou, W.; Zhang, L.; Wu, S.; Dong, X.; Gao, F.; Deng, Y.; Tang, C.; Chen, Z.; et al. Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Appl. Catal. B 2014, 144, 152–165. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Deng, S.A.; Rong, T. A Ce–Sn–Ox catalyst for the selective catalytic reduction of NOx with NH3. Catal. Commun. 2013, 40, 47–50. [Google Scholar] [CrossRef]
- Huang, J.; Lin, J.; Chen, X.; Zheng, Y.; Xiao, Y.; Zheng, Y. Optimizing the Microstructure of SnO2–CeO2 Binary Oxide Supported Palladium Catalysts for Efficient and Stable Methane Combustion. ACS Appl. Mater. Interfaces 2022, 14, 16233–16244. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Lin, J.-P.; Xia, Q.; Dai, L.; Zhou, G.-J.; Guo, Y.-L.; Lu, G.-Z.; Zhan, W.-C. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 2019, 38, 107–114. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, C.; Xie, Y.; Pan, Z.; Xue, X.; Zhang, R. A study on the catalytic oxidation of soot by Sn–Ce composite oxides: Adsorbed oxygen and defect sites synergistically enhance catalytic activity. New J. Chem. 2019, 43, 17423–17432. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, M.; Dong, Z.; Natan, A.; Chen, S.; Yang, Y.; Huang, X.; Yang, Y. Enhanced acetone detection performance using facile CeO2–SnO2 nanosheets. Appl. Phys. A 2019, 126, 33. [Google Scholar] [CrossRef]
- Berton, M.; Avellaneda, C. Electrochemical and optical properties of CeO2-SnO2 and CeO2-SnO2:X (X = Li, C, Si) films. Mater. Res. 2001, 4, 241–244. [Google Scholar] [CrossRef]
- Sukanya, R.; Ramki, S.; Chen, S.-M.; Karthik, R. Ultrasound treated cerium oxide/tin oxide (CeO2/SnO2) nanocatalyst: A feasible approach and enhanced electrode material for sensing of anti-inflammatory drug 5-aminosalicylic acid in biological samples. Anal. Chim. Acta 2020, 1096, 76–88. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Q. Synergistic effect between Ce-doped SnO2 and bio-carbon for electrocatalytic degradation of tetracycline: Experiment, CFD, and DFT. Chemosphere 2023, 332, 138705. [Google Scholar] [CrossRef]
- Naidi, S.N.; Khan, F.; Tan, A.L.; Harunsani, M.H.; Kim, Y.-M.; Khan, M.M. Green synthesis of CeO2 and Zr/Sn-dual doped CeO2 nanoparticles with photoantioxidant and antibiofilm activities. Biomater. Sci. 2021, 9, 4854–4869. [Google Scholar] [CrossRef] [PubMed]
- Foletto, E.L.; Battiston, S.; Collazzo, G.C.; Bassaco, M.M.; Mazutti, M.A. Degradation of Leather Dye Using CeO2–SnO2 Nanocomposite as Photocatalyst Under Sunlight. Water Air Soil Pollut. 2012, 223, 5773–5779. [Google Scholar] [CrossRef]
- Borker, P.; Salker, A.V. Photocatalytic degradation of textile azo dye over Ce1−xSnxO2 series. Mater. Sci. Eng. B 2006, 133, 55–60. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, M.; Liu, C.; Wang, H.; Zhang, Y.; Zang, Y.; Zhang, Z.; Han, R.; Ji, N.; Song, C.; et al. Synergistic Effect over CeSnO x Catalyst for the Selective Catalytic Oxidation of NH3. ACS Appl. Energy Mater. 2022, 5, 14211–14221. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, X.; Zhou, Z.; Feng, Y.; Li, J. Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3. Appl. Surf. Sci. 2018, 428, 526–533. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Shan, W.; Yu, Y.; Liu, J.; He, H. Developing a thermally stable Co/Ce-Sn catalyst via adding Sn for soot and CO oxidation. iScience 2022, 25, 104103. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Meng, Q.; Chen, M.; Luo, X.; Dai, Q.; Lu, H.; Wu, Z.; Weng, X. Selective Ru Adsorption on SnO2/CeO2 Mixed Oxides for Efficient Destruction of Multicomponent Volatile Organic Compounds: From Laboratory to Practical Possibility. Environ. Sci. Technol. 2022, 56, 9762–9772. [Google Scholar] [CrossRef]
- Jayachandran, V.; Dhandapani, V.; Muniappan, E.; Park, D.; Kim, B.; Arun, A.; Ayyappan, P. Assessment of the Synergetic Performance of Nanostructured CeO2-SnO2/Al2O3 Mixed Oxides on Automobile Exhaust Control. Materials 2022, 15, 8460. [Google Scholar] [CrossRef]
- Leangtanom, P.C.N.; Phanichphant, S.; Kruefu, V. Facile Synthesis of CeO2/SnO2 N-N Heterostructure. AMM 2019, 891, 200–205. [Google Scholar] [CrossRef]
- Wan, W.; Li, Y.; Ren, X.; Zhao, Y.; Gao, F.; Zhao, H. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol. Nanomaterials 2018, 8, 112. [Google Scholar] [CrossRef]
- Gupta, A.; Hegde, M.S.; Priolkar, K.R.; Waghmare, U.V.; Sarode, P.R.; Emura, S. Structural Investigation of Activated Lattice Oxygen in Ce1−xSnxO2 and Ce1−x−ySnxPdyO2−δ by EXAFS and DFT calculation. Chem. Mater. 2009, 21, 5836–5847. [Google Scholar] [CrossRef]
- Ayastuy, J.L.; Iglesias-González, A.; Gutiérrez-Ortiz, M.A. Synthesis and characterization of low amount tin-doped ceria (CeXSn1−XO2−δ) for catalytic CO oxidation. Chem. Eng. J. 2014, 244, 372–381. [Google Scholar] [CrossRef]
- Baidya, T.; Gupta, A.; Deshpandey, P.A.; Madras, G.; Hegde, M.S. High Oxygen Storage Capacity and High Rates of CO Oxidation and NO Reduction Catalytic Properties of Ce1−xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ. J. Phys. Chem. C 2009, 113, 4059–4068. [Google Scholar] [CrossRef]
- Baidya, T.; Bera, P.; Kröcher, O.; Safonova, O.; Abdala, P.M.; Gerke, B.; Pöttgen, R.; Priolkar, K.R.; Mandal, T.K. Understanding the anomalous behavior of Vegard’s law in Ce1−xMxO2 (M = Sn and Ti; 0 < x ≤ 0.5) solid solutions. Phys. Chem. Chem. Phys. 2016, 18, 13974–13983. [Google Scholar] [CrossRef]
- Motaung, D.E.; Mhlongo, G.H.; Makgwane, P.R.; Dhonge, B.P.; Cummings, F.R.; Swart, H.C.; Ray, S.S. Ultra-high sensitive and selective H2 gas sensor manifested by interface of n–n heterostructure of CeO2-SnO2 nanoparticles. Sens. Actuators B Chem. 2018, 254, 984–995. [Google Scholar] [CrossRef]
- López, J.M.; Gilbank, A.L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. The Prevalence of Surface Oxygen Vacancies over the Mobility of Bulk Oxygen in Nanostructured Ceria for the Total Toluene Oxidation. Appl. Catal. B Environ. 2015, 174–175, 403. [Google Scholar] [CrossRef]
- Motsoeneng, R.G.; Kortidis, I.; Ray, S.S.; Motaung, D.E. Designing SnO2 Nanostructure-Based Sensors with Tailored Selectivity toward Propanol and Ethanol Vapors. ACS Omega 2019, 4, 13696–13709. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, S.; Dong, M.; Wang, J.; Fan, W. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone. J Catal. 2020, 389, 60–70. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhou, Y.; Lu, H.; Zhang, Z.; Chen, Y. Soot combustion performance and H2-TPR study on ceria-based mixed oxides. Chin. J. Catal. 2013, 34, 567–577. [Google Scholar] [CrossRef]
- Liu, C.; Han, J.; Bi, Y.; Wang, J.; Guo, M.; Liu, Q. A novel Cerium-Tin composite oxide catalyst with high SO2 tolerance for selective catalytic reduction of NOx with NH3. Catal. Today 2021, 376, 65–72. [Google Scholar] [CrossRef]
- Sellick, D.R.; Aranda, A.; García, T.; López, J.M.; Solsona, B.; Mastral, A.M.; Morgan, D.J.; Carley, A.F.; Taylor, S.H. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Appl. Catal. B 2013, 132–133, 98–106. [Google Scholar] [CrossRef]
- Yan, L.; Liu, Y.; Zha, K.; Li, H.; Shi, L.; Zhang, D. Deep insight into the structure–activity relationship of Nb modified SnO2–CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Catal. Sci. Technol. 2017, 7, 502–514. [Google Scholar] [CrossRef]
- Nolan, M.; Fearon, J.E.; Watson, G.W. Oxygen vacancy formation and migration in ceria. Solid State Ion. 2006, 177, 3069–3074. [Google Scholar] [CrossRef]
- Mi, R.; Li, D.; Hu, Z.; Yang, R.T. Morphology Effects of CeO2 Nanomaterials on the Catalytic Combustion of Toluene: A Combined Kinetics and Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study. ACS Catalysis 2021, 11, 7876–7889. [Google Scholar] [CrossRef]
- Campbell, C.T.; Peden, C.H.F. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713–714. [Google Scholar] [CrossRef]
Ce1−XSnXO2 | Crystalline Size (nm) | Lattice Constants (Å) | ||
---|---|---|---|---|
CeO2 | SnO2 | CeO2 | SnO2 | |
SnO2 | / * | 7.7 | / | 4.7244 |
Ce0.1Sn0.9O2 | / | 3.6 | / | 4.7406 |
Ce0.5Sn0.5O2 | 7.6 | / | 5.2851 | / |
Ce0.6Sn0.4O2 | 5.4 | / | 5.3618 | / |
Ce0.7Sn0.3O2 | 4.2 | / | 5.3722 | / |
Ce0.8Sn0.2O2 | 5.4 | / | 5.3806 | / |
CeO2 | 16.4 | / | 5.3999 | / |
Catalyst | BET Surface Area (m2/g) | Atomic Concentration (at%) | SAAs (m2/g) | |||||
---|---|---|---|---|---|---|---|---|
O | Ce | Sn | ||||||
Oα | Oβ | Ce3+ | Ce4+ | Ce3+ | Oα | |||
CeO2 | 10.7 | 11.9 | 34.5 | 2.3 | 11.5 | / * | 0.2 | 2.4 |
Ce0.8Sn0.2O2 | 51.4 | 15.1 | 35.8 | 2.3 | 9.6 | 3.9 | 1.1 | 13.4 |
Ce0.7Sn0.3O2 | 41.1 | 15.7 | 34.4 | 2.0 | 8.6 | 5.5 | 0.8 | 11.3 |
Ce0.6Sn0.4O2 | 37.3 | 15.5 | 34.9 | 2.2 | 7.7 | 7.2 | 0.7 | 10.0 |
Ce0.5Sn0.5O2 | 26.1 | 16.7 | 34.3 | 1.9 | 6.4 | 9.7 | 0.4 | 7.5 |
Ce0.1Sn0.9O2 | 51.6 | 8.6 | 41.8 | 0.7 | 2.0 | 17.8 | 0.3 | 7.6 |
SnO2 | 43.3 | 15.9 | 39.4 | / | / | 21.1 | / | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Wang, Q.; Xu, J.; Zang, S.; Chen, L.; Wang, L.; Mo, L. Ce1−xSnxO2 Catalysts Prepared with Combustion Method for Catalytic Combustion of Ethyl Acetate. Catalysts 2023, 13, 1400. https://doi.org/10.3390/catal13111400
Jiang Y, Wang Q, Xu J, Zang S, Chen L, Wang L, Mo L. Ce1−xSnxO2 Catalysts Prepared with Combustion Method for Catalytic Combustion of Ethyl Acetate. Catalysts. 2023; 13(11):1400. https://doi.org/10.3390/catal13111400
Chicago/Turabian StyleJiang, Yue, Qing Wang, Jing Xu, Shaohong Zang, Liqiao Chen, Luhui Wang, and Liuye Mo. 2023. "Ce1−xSnxO2 Catalysts Prepared with Combustion Method for Catalytic Combustion of Ethyl Acetate" Catalysts 13, no. 11: 1400. https://doi.org/10.3390/catal13111400
APA StyleJiang, Y., Wang, Q., Xu, J., Zang, S., Chen, L., Wang, L., & Mo, L. (2023). Ce1−xSnxO2 Catalysts Prepared with Combustion Method for Catalytic Combustion of Ethyl Acetate. Catalysts, 13(11), 1400. https://doi.org/10.3390/catal13111400