Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organocatalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Bis-Alcohol-Functionalized Diimidazolium Ionic Liquids (ILs) 3 and 4
3.3. General Procedure for the Synthesis of Bis-Alcohol-Functionalized Ionic Liquid–Supported L-Boc-Proline 6
3.4. General Procedure for the Synthesis of Ionic Liquid–Supported L-Proline 7
3.5. General Procedure for the Synthesis of THP Derivative 11
3.6. Structural Characterization Data of THP Derivatives 11a–o
Structural Characterization Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, W.; Chan, T.H. Ionic-Liquid-Supported Organocatalyst: Efficient and Recyclable Ionic-Liquid-Anchored Proline for Asymmetric Aldol Reaction. Adv. Synth. Catal. 2006, 348, 1711–1718. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Iliyasov, T.M.; Karpenko, K.A.; Akchurin, R.N.; Minyaev, M.E. Tetrahydropyridines’Stereoselective Formation, How Lockdown Assisted in the Identification of the Features of Its Mechanism. Molecules 2022, 27, 4367. [Google Scholar] [CrossRef] [PubMed]
- Arcadia, C.E.; Kennedy, E.; Geiser, J.; Dombroski, A.; Oakley, K.; Chen, S.L.; Rosenstein, J.K. Multicomponent Molecular Memory. Nat. Commun. 2020, 11, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cioc, R.C.; Ruijter, E.; Orru, R.V. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar] [CrossRef]
- Ramaraju, P.; Mir, N.A.; Singh, D.; Kumar, I. Enantioselective Synthesis Of 1, 2, 5, 6-Tetrahydropyridines (THPs) via Proline-Catalyzed Direct Mannich-Cyclization/Domino Oxidation–Reduction Sequence: Application for Medicinally important N-Heterocycles. RSC Adv. 2016, 6, 60422–60432. [Google Scholar] [CrossRef]
- Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small Heterocycles in Multicomponent Reactions. Chem. Rev. 2014, 114, 8323–8359. [Google Scholar] [CrossRef]
- Prabhakara, M.D.; Maiti, B. Ionic Liquid-Immobilized Proline(s) Organocatalyst-Catalyzed One-Pot Multi-Component Mannich Reaction under Solvent-Free Condition. Res. Chem. Intermed. 2020, 46, 2381–2401. [Google Scholar] [CrossRef]
- Domling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef] [Green Version]
- Asadi, B.; Landarani-Isfahani, A.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Amiri Rudbari, H. Diastereoselective Synthesis of Symmetrical and Unsymmetrical Tetrahydropyridines Catalyzed by Bi (III) Immobilized on Triazine Dendrimer Stabilized Magnetic Nanoparticles. ACS Comb. Sci. 2017, 19, 356–364. [Google Scholar] [CrossRef]
- Shi, F.; Tan, W.; Zhu, R.-Y.; Xing, G.-J.; Tu, S.-J. Catalytic Asymmetric Five-Component Tandem Reaction: Diastereo- and Enantioselective Synthesis of Densely Functionalized Tetrahydropyridines with Biological Importance. Adv. Synth. Catal. 2013, 355, 1605–16022. [Google Scholar] [CrossRef]
- Guo, H.C.; Xu, Q.H.; Kwon, O. Phosphine-Promoted [3+3] Annulations of Aziridines with Allenoates: Facile Entry into Highly Functionalized Tetrahydropyridines. J. Am. Chem. Soc. 2009, 131, 6318–6319. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, H.; Kondo, Y. Palladium (0)-Catalyzed Alkynyl and Allenyliminium Ion Cyclizations Leading to 1,4-Disubstituted 1,2,3,6-Tetrahydropyridines. Angew. Chem. Int. Ed. 2008, 47, 4851–4854. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Tao, C.; Wang, H.; Cheng, B.; Zhai, H.; Li, Y. Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from Morita-Baylis-Hillman Carbonates through a One-Pot Three-Component Cyclization. J. Org. Chem. 2018, 83, 835–842. [Google Scholar] [CrossRef]
- Kataria, M.; Pramanik, S.; Kumar, M.; Bhalla, V. One-Pot Multicomponent Synthesis of Tetrahydropyridines Promoted by Luminescent ZnO Nanoparticles Supported by the Aggregates of 6, 6-Dicyanopentafulvene. Chem. Comm. 2015, 51, 1483–1486. [Google Scholar] [CrossRef]
- Hartweg, M.; Becer, C.R. Direct Polymerization of Levulinic Acid via Ugi Multicomponent Reaction. Green Chem. 2016, 18, 3272–3277. [Google Scholar] [CrossRef] [Green Version]
- Blümel, M.; Chauhan, P.; Hahn, R.; Raabe, G.; Enders, D. Asymmetric Synthesis of Tetrahydropyridines via an Organocatalytic One-Pot Multicomponent Michael/Aza-Henry/Cyclization Triple Domino Reaction. Org. Lett. 2014, 16, 6012–6015. [Google Scholar] [CrossRef]
- Clarke, P.A.; Zaytzev, A.V.; Whitwood, A.C. Pot, atom and step economic (PASE) synthesis of highly functionalized piperidines: A five-component condensation. Tetrahedron Lett. 2007, 48, 5209–5212. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Njardarson, J.T. Synthesis of 1, 2, 3, 6-Tetrahydropyridines via Aminophosphate Enabled Anionic Cascade and Acid Catalyzed Cyclization Approaches. Org. Lett. 2015, 17, 4030–4033. [Google Scholar] [CrossRef]
- Khan, A.T.; Khan, M.M.; Bannuru, K.K. Iodine Catalyzed One-Pot Five Component Reactions for Direct Synthesis of Densely Functionalized Piperidines. Tetrahedron 2010, 66, 7762–7772. [Google Scholar] [CrossRef]
- Wang, H.J.; Mo, L.P.; Zhang, Z.H. Cerium Ammonium Nitrate-Catalyzed Multicomponent Reaction for Efficient Synthesis of Functionalized Tetrahydropyridines. ACS Comb. Sci. 2011, 13, 181–185. [Google Scholar] [CrossRef]
- Brahmachari, G.; Das, S. Bismuth Nitrate-Catalyzed Multicomponent Reaction for Efficient and One-Pot Synthesis of Densely Functionalized Piperidine Scaffolds at Room Temperature. Tetrahedron Lett. 2012, 53, 1479–1484. [Google Scholar] [CrossRef]
- Umamahesh, B.; Sathesh, V.; Ramachandran, G.; Sathishkumar, M.; Sathiyanarayanan, K. LaCl3.7H2O as an Efficient Catalyst for One-Pot Synthesis of Highly Functionalized Piperidines via Multi-component Organic Reactions. Catal. Lett. 2012, 142, 895–900. [Google Scholar] [CrossRef]
- Han, R.G.; Wang, Y.; Li, Y.Y.; Xu, P.F. Proline-Mediated Enantioselective Construction of Tetrahydropyridines via a Cascade Mannich-Type/Intramolecular Cyclization Reaction. Adv. Synth. Catal. 2008, 350, 1474–1478. [Google Scholar] [CrossRef]
- Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P. Organocatalyzed Highly Atom Economic One Pot Synthesis of Tetrahydropyridines as Antimalarials. Bioorg. Med. Chem. 2009, 17, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Sajadikhah, S.S.; Hazeri, N.; Maghsoodlou, M.T.; Habibi-Khorassani, S.M.; Willis, A.C. Trityl Chloride as an Efficient Organic Catalyst for One-Pot, Five Component and Diastereoselective Synthesis of Highly Substituted Piperidines. Res. Chem. Intermed. 2014, 40, 723–736. [Google Scholar] [CrossRef]
- Sajadikhah, S.S.; Hazeri, N.; Maghsoodlou, M.T.; Habibi-Khorassani, S.M.; Beigbabaei, A.; Lashkari, M. One-Pot Three-Component Synthesis of Highly Substituted Piperidines Using 1-Methyl-2-oxopyrrolidinium Hydrogen Sulfate. J. Chem. Res. 2012, 36, 463–467. [Google Scholar] [CrossRef]
- Mansilla, J.; Saá, J.M. Enantioselective, Organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman Reactions: Stereochemical Issues. Molecules 2010, 15, 709–734. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Wang, J.; Xu, Z.; Li, J. An Efficient One-Pot Synthesis of Pyrano[3,2-c] quinolin-2,5-dione Derivatives Catalyzed by L-Proline. Molecules 2012, 17, 13856–13863. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, M.; Easwar, S.; Pasi, F.; Trombini, C. The Ion Tag Strategy as a Route to Highly Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Adv. Synth. Catal. 2009, 351, 276–282. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef]
- Qiao, Y.; Headley, A.D. Ionic Liquid Immobilized Organocatalysts for Asymmetric Reactions in Aqueous Media. Catalysts 2013, 3, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Pasuparthy, S.D.; Maiti, B. [CMMIM][BF4–] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno [4,3-d] pyrido [1,2-a] pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS Omega. 2022, 7, 39147–39158. [Google Scholar] [CrossRef]
- Ahmad, M.G.; Chanda, K. Ionic Liquid Coordinated Metal-Catalyzed Organic Transformations: A Comprehensive Review. Coord. Chem. Rev. 2022, 472, 214769. [Google Scholar] [CrossRef]
- Khan, R.A.; Mohammed, H.A.; Sulaiman, G.M.; Subaiyel, A.A.; Karuppaiah, A.; Rahman, H.; Makhathini, S.; Ramburrun, P.; Choonara, Y.E. Molecule(s) of Interest: I. Ionic Liquids–Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses’, Current Status, Emerging Trends, Challenges, and Prospects. Int. J. Mol. Sci. 2022, 23, 14346. [Google Scholar] [CrossRef]
- Chakraborti, A.K.; Roy, S.R. On Catalysis by Ionic Liquids. J. Am. Chem. Soc. 2009, 131, 6902–6903. [Google Scholar] [CrossRef]
- Padvi, S.A.; Dalal, D.S. Task-Specific Ionic Liquids as a Green Catalysts and Solvents for Organic Synthesis. Curr. Green Chem. 2020, 7, 105–119. [Google Scholar] [CrossRef]
- Vekariya, R.L. A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Qu, H.; Mao, Z.; Lin, X. Organocatalytic Asymmetric Multicomponent Reactions of Aromatic Aldehydes and Anilines with β-Ketoesters: Facile and Atom-Economical Access to Chiral Tetrahydropyridines. Chem Comm. 2013, 49, 1401–1403. [Google Scholar] [CrossRef] [Green Version]
- Davanagere, P.M.; Maiti, B. Bifunctional C2-Symmetric Ionic Liquid-Supported (S)-Proline as A Recyclable Organocatalyst for Mannich Reactions in Neat Condition. Results Chem. 2021, 3, 100152. [Google Scholar] [CrossRef]
- Abbasi, M. Design, Preparation, and Characterization of A New Ionic Liquid, 1,3-Disulfonic Acid Benzimidazolium Chloride, as an Efficient and Recyclable Catalyst for the Synthesis of Tetrahydropyridine Under Solvent Free Conditions. RSC Adv. 2015, 5, 67405–67411. [Google Scholar] [CrossRef]
Entry | Solvent | Time (h) | Yield b (%) |
---|---|---|---|
1 | Ethanol | 24 | 55 |
2 | H2O | 24 | − |
3 | CH3OH | 24 | 10 |
4 | THF | 24 | 10 |
5 | CH3CN | 24 | 45 |
6 | CH2Cl2 | 24 | 50 |
7 | CH3Cl | 24 | 50 |
8 | IPA | 4 | 92 |
9 | IPA/H2O | 24 | 40 |
10 | EtOH/H2O | 24 | 35 |
11 | Solvent-free | 24 | − |
Entry | Amount of Catalyst (mol%) | Time (h) | Yield b (%) |
---|---|---|---|
1 | 0 | 23 | - |
2 | 0 | 18 | 20 |
3 | 1 | 12 | 28 |
4 | 2 | 11 | 35 |
5 | 3 | 8 | 55 |
6 | 4 | 5 | 74 |
7 | 5 | 4 | 92 |
8 | 6 | 4 | 92 |
9 | 7 | 4 | 92 |
10 | 8 | 4 | 92 |
11 | 9 | 4 | 92 |
12 | 10 | 4 | 92 |
Entry | CH3COCH2COOR1 | R2PhCHO | R3PhNH2 | Isolated yield b (%) |
dr (trans:cis) | er c |
---|---|---|---|---|---|---|
11a | 92 | 01:99 | 02:98 | |||
11b | 92 | 99:01 | 97:03 | |||
11c | 90 | 99:01 | 97:03 | |||
11d | 90 | 99:01 | 100:00 | |||
11e | 88 | 87:13 | 88:12 | |||
11f | 90 | 01:99 | 25:75 | |||
11g | 90 | 01:99 | 00:100 | |||
11h | 90 | 99:01 | 95:05 | |||
11i | 90 | 01:99 | 15:85 | |||
11j | 90 | 98:02 | 98:02 | |||
11k | 90 | 01:99 | 06:94 | |||
11l | 90 | 10:90 | 14:86 | |||
11m | 90 | 99:01 | 99:01 | |||
11n | 90 | 02:98 | 00:100 | |||
11o | 86 | 22:88 | 20:80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davanagere, P.M.; De, M.; Chanda, K.; Maiti, B. Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organocatalyst. Catalysts 2023, 13, 209. https://doi.org/10.3390/catal13010209
Davanagere PM, De M, Chanda K, Maiti B. Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organocatalyst. Catalysts. 2023; 13(1):209. https://doi.org/10.3390/catal13010209
Chicago/Turabian StyleDavanagere, Prabhakara Madivalappa, Mrinmoy De, Kaushik Chanda, and Barnali Maiti. 2023. "Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organocatalyst" Catalysts 13, no. 1: 209. https://doi.org/10.3390/catal13010209
APA StyleDavanagere, P. M., De, M., Chanda, K., & Maiti, B. (2023). Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organocatalyst. Catalysts, 13(1), 209. https://doi.org/10.3390/catal13010209