Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Ag-BTO Nanofibers
2.2. Piezo-Photocatalytic Property of Ag-BTO Nanofibers
2.3. Mechanism Analysis
3. Materials and Methods
3.1. Synthesis of BaTiO3 Nanofibers
3.2. Characterization and Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, T.; Liu, L.Z.; Hu, C.; Huang, H.W. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chin. J. Catal. 2021, 42, 1413–1438. [Google Scholar] [CrossRef]
- Goktas, S.; Goktas, A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734. [Google Scholar] [CrossRef]
- Kumar, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V.K.; Nguyen, V.; Singh, P. C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: Viewpoints and challenges. J. Mater. Chem. A 2021, 9, 111–153. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Jiang, H.; Wang, H. In situ stable growth of Bi2WO6 on natural hematite for efficient antibiotic wastewater purification by photocatalytic activation of peroxymonosulfate. Chem. Eng. J. 2022, 446, 136704. [Google Scholar] [CrossRef]
- Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B Environ. 2021, 284, 119762. [Google Scholar] [CrossRef]
- Moradi, M.; Hasanvandian, F.; Isari, A.A.; Hayati, F.; Kakavandi, B.; Setayesh, S.R. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. Appl. Catal. B Environ. 2021, 285, 119838. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, L.; Wang, K.; Li, Y.; Zhang, G. Novel AgI/BiSbO4 heterojunction for efficient photocatalytic degradation of organic pollutants under visible light: Interfacial electron transfer pathway, DFT calculation and degradation mechanism study. J. Hazard. Mater. 2021, 410, 124948. [Google Scholar] [CrossRef]
- Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G. Synthesis and photocatalytic properties of Sn-TiO2 nanomaterials. J. Adv. Dielectr. 2020, 10, 2060018. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Lu, N.; Lin, H.; Zhou, S.; Liu, F. Anchoring cobalt single atoms on 2D covalent triazine framework with charge nanospatial separation for enhanced photocatalytic pollution degradation. Mater. Today Chem. 2022, 24, 100832. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Zhou, Y.; Zeng, L.; Huang, Y.; Lan, S.; Zhu, M. Piezo-enhanced charge carrier separation over plasmonic Au-BiOBr for piezo-photocatalytic carbamazepine removal. Appl. Catal. B Environ. 2022, 311, 121369. [Google Scholar] [CrossRef]
- Idris, A.M.; Zheng, S.; Wu, L.; Zhou, S.; Lin, H.; Chen, Z.; Xu, L.; Wang, J.; Li, Z. A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation. Chem. Eng. J. 2022, 446, 137197. [Google Scholar] [CrossRef]
- Liao, B.; Liao, X.; Xie, H.; Qin, Y.; Zhu, Y.; Yu, Y.; Hou, S.; Zhang, Y.; Fan, X. Built in electric field boosted photocatalytic performance in a ferroelectric layered material SrBi2Ta2O9 with oriented facets: Charge separation and mechanism insights. J. Mater. Sci. Technol. 2022, 123, 222–233. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671. [Google Scholar] [CrossRef]
- Dai, B.Y.; Biesold, G.M.; Zhang, M.; Zou, H.Y.; Ding, Y.; Wang, Z.L.; Lin, Z.Q. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem. Soc. Rev. 2021, 50, 13646–13691. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.X.; Chen, Y.D.; Ren, Z.Q.; Li, X.; Zhang, Q.W.; Wu, J.Z.; Li, Y.Q.; Liu, W.L.; Li, P.; Fu, Y.M.; et al. Morphology engineering of type-II heterojunction nanoarrays for improved sonophotocatalytic capability. Ultrason. SonoChem. 2021, 81, 105849. [Google Scholar] [CrossRef]
- Zhang, C.X.; Lei, D.; Xie, C.F.; Hang, X.S.; He, C.A.X.; Jiang, H.L. Piezo-Photocatalysis over Metal-Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Adv. Mater. 2021, 33, 2106308. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Dong, F.; Zhang, Z.; Han, L.; Luo, X.; Huang, J.; Feng, Z.; Chen, Z.; Jia, G.; et al. Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catal. 2021, 11, 4739–4769. [Google Scholar] [CrossRef]
- Marshall, J.; Walker, D.; Thomas, P. Bismuth zinc niobate: BZN-BT, a new lead-free BaTiO3-based ferroelectric relaxor? J. Adv. Dielectr. 2020, 10, 2050033. [Google Scholar] [CrossRef]
- Sidorenko, E.; Ngoc, C.T.B.; Prikhodko, G.; Natkhin, I.; Shloma, A.; Kharchenko, D. The constant electric field effect on the radio absorption of crystals BaTiO3 and piezoceramics PCR-1. J. Adv. Dielectr. 2020, 10, 2060020. [Google Scholar] [CrossRef]
- Yao, M.; Li, L.; Wang, Y.; Yang, D.; Miao, L.; Wang, H.; Liu, M.; Ren, K.; Fan, H.; Hu, D. Mechanical Energy Harvesting and Specific Potential Distribution ofa Flexible Piezoelectric Nanogenerator Based on 2-D BaTiO3-Oriented Polycrystals. ACS Sustain. Chem. Eng. 2022, 10, 3276–3287. [Google Scholar] [CrossRef]
- Cheng, S.S.; Luo, Y.; Zhang, J.; Shi, R.; Wei, S.T.; Dong, K.J.; Liu, X.M.; Wu, S.L.; Wang, H.B. The highly effective therapy of ovarian cancer by Bismuth-doped oxygen-deficient BaTiO3 with enhanced sono-piezocatalytic effects. Chem. Eng. J. 2022, 442, 136380. [Google Scholar] [CrossRef]
- Fu, Y.M.; Ren, Z.Q.; Guo, L.X.; Li, X.; Li, Y.Q.; Liu, W.L.; Li, P.; Wu, J.Z.; Ma, J. Piezotronics boosted plasmonic localization and hot electron injection of coralline-like Ag/BaTiO3 nanoarrays for photocatalytic application. J. Mater. Chem. C 2021, 9, 12596–12604. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.Y.; Li, J.; Zhan, F.Q.; Zhai, D.; Sun, Q.W.; Xiao, Z.D.; Luo, H.; Zhang, D. Three dimensional BaTiO3 piezoelectric ceramics coated with TiO2 nanoarray for high performance of piezo-photoelectric catalysis. Nano Energy 2022, 98, 107267. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Kim, D.; Franco, C.; Terzopoulou, A.; Veciana, A.; Puigmarti-Luis, J.; Chen, X.Z.; Nelson, B.J.; Pane, S. Enhanced Piezocatalytic Performance of BaTiO3 Nanosheets with Highly Exposed {001} Facets. Adv. Funct. Mater. 2022, 32, 2202180. [Google Scholar] [CrossRef]
- Sanchis-Gual, R.; Otero, T.F.; Coronado-Puchau, M.; Coronado, E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. Nanoscale 2021, 13, 12676–12686. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.P.; Ma, C.C.; Zhu, Z.; Song, X.H.; Wang, H.Q.; Huo, P.W.; Li, X.Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B-Environ. 2021, 283, 119638. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, C.C.; Liu, Y.P.; Xue, B.; Jiang, W.; Liu, Y.; Mo, L.Y.; Chen, X.B. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chem. Eng. J. 2021, 415, 128991. [Google Scholar] [CrossRef]
- Chen, L.W.; Hao, Y.C.; Guo, Y.; Zhang, Q.H.; Li, J.N.; Gao, W.Y.; Ren, L.T.; Su, X.; Hu, L.Y.; Zhang, N.; et al. Metal-Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. J. Am. Chem. Soc. 2021, 143, 5727–5736. [Google Scholar] [CrossRef]
- Chen, T.; Meng, J.; Wu, S.; Pei, J.; Lin, Q.; Wei, X.; Li, J.; Zhang, Z. Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution. J. Alloys Compd. 2018, 754, 184–189. [Google Scholar] [CrossRef]
- On, D.V.; Vuong, L.D.; Chuong, T.V.; Quang, D.A.; Tuyen, H.V.; Tung, V.T. Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles. J. Adv. Dielectr. 2021, 11, 2150014. [Google Scholar] [CrossRef]
- Charoonsuk, T.; Sriphan, S.; Nawanil, C.; Chanlek, N.; Vittayakorn, W.; Vittayakorn, N. Tetragonal BaTiO3 nanowires: A template-free salt-flux-assisted synthesis and its piezoelectric response based on mechanical energy harvesting. J. Mater. Chem. C 2019, 7, 8277–8286. [Google Scholar] [CrossRef]
- Miot, C.; Husson, E.; Proust, C.; Erre, R.; Coutures, J.P. Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion etching. J. Eur. Ceram. Soc. 1998, 18, 339–343. [Google Scholar] [CrossRef]
- Nithya, P.M.; Devi, L.G. Effect of surface Ag metallization on the photocatalytic properties of BaTiO3: Surface plasmon effect and variation in the Schottky barrier height. Surf. Interfaces 2019, 15, 205–215. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, M.; Yan, H.; Zhou, P.; Chen, X. Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids. Appl. Therm. Eng. 2020, 178, 115561. [Google Scholar] [CrossRef]
- Liu, X.-D.; Chen, B.; Wang, G.-G.; Ma, S.; Cheng, L.; Liu, W.; Zhou, L.; Wang, Q.-Q. Controlled Growth of Hierarchical Bi2Se3/CdSe-Au Nanorods with Optimized Photothermal Conversion and Demonstrations in Photothermal Therapy. Adv. Funct. Mater. 2021, 31, 2104424. [Google Scholar] [CrossRef]
- Sun, Q.; Hou, P.; Wu, S.; Yu, L.; Dong, L. The enhanced photocatalytic activity of Ag-Fe2O3-TiO2 performed in Z-scheme route associated with localized surface plasmon resonance effect. Colloids Surf. A 2021, 628, 127304. [Google Scholar] [CrossRef]
- Humayun, M.; Ullah, H.; Cheng, Z.-E.; Tahir, A.A.; Luo, W.; Wang, C. Au surface plasmon resonance promoted charge transfer in Z-scheme system enables exceptional photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2022, 310, 121322. [Google Scholar] [CrossRef]
- Xu, Q.; Knezevic, M.; Laachachi, A.; Franger, S.; Colbeau-Justin, C.; Ghazzal, M.N. Insight into Interfacial Charge Transfer during Photocatalytic H2 Evolution through Fe, Ni, Cu and Au Embedded in a Mesoporous TiO2@SiO2 Core-shell. ChemCatChem 2022, 14, e202200102. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, H.; Wang, X.; Zhang, H.; Chang, S.; Li, Q.; Dai, W.-L. Robust S-scheme hierarchical Au-ZnIn2S4/NaTaO3: Facile synthesis, superior photocatalytic H2 production and its charge transfer mechanism. J. Colloid Interface Sci. 2022, 625, 785–799. [Google Scholar] [CrossRef]
- Berdakin, M.; Soldano, G.; Bonafe, F.P.; Liubov, V.; Aradi, B.; Frauenheim, T.; Sanchez, C.G. Dynamical evolution of the Schottky barrier as a determinant contribution to electron-hole pair stabilization and photocatalysis of plasmon-induced hot carriers. Nanoscale 2022, 14, 2816–2825. [Google Scholar] [CrossRef]
- Gai, Q.; Ren, S.; Zheng, X.; Liu, W.; Dong, Q. Enhanced photocatalytic performance of Ag/CdS by L-cysteine functionalization: Combination of introduced co-catalytic groups and optimized injection of hot electrons. Appl. Surf. Sci. 2022, 579, 151838. [Google Scholar] [CrossRef]
- Manuel, A.P.; Shankar, K. Hot Electrons in TiO2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NanoMater 2021, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhen, W.; Yu, S.; Xue, C. Plasmon Coupling-Induced Hot Electrons for Photocatalytic Hydrogen Generation. Chem. Asian J. 2021, 16, 3683–3688. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; Lee, B.W.; Jung, M.S.; Han, H.S.; Kim, S.H.; Chen, K.; Kim, D.H.; Heinz, T.F.; Fan, S.; Lee, J.; et al. Retarded Charge-Carrier Recombination in Photoelectrochemical Cells from Plasmon-Induced Resonance Energy Transfer. Adv. Energy Mater. 2020, 10, 2000570. [Google Scholar] [CrossRef]
- Jia, H.; Wong, Y.L.; Wang, B.; Xing, G.; Tsoi, C.C.; Wang, M.; Zhang, W.; Jian, A.; Sang, S.; Lei, D.; et al. Enhanced solar water splitting using plasmon-induced resonance energy transfer and unidirectional charge carrier transport. Opt. Express 2021, 29, 34810–34825. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Meng, F.; Senty, T.R.; Bristow, A.D.; Wu, N. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 2015, 9, 601–607. [Google Scholar] [CrossRef]
- Ma, J.; Liu, X.; Wang, R.; Zhang, F.; Tu, G. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022, 15, 5671–5677. [Google Scholar] [CrossRef]
- Kohan, M.G.; You, S.; Camellini, A.; Concina, I.; Zavelani-Rossi, M.; Vomiero, A. Optical field coupling in ZnO nanorods decorated with silver plasmonic nanoparticles. J. Mater. Chem. C 2021, 9, 15452–15462. [Google Scholar] [CrossRef]
Cell Parameters | Tetragonal BaTiO3 | Cubic BaTiO3 | BaCO3 |
---|---|---|---|
Proportion | 64.32% | 32.20% | 3.48% |
Space Group | P4mm | Pm-3m | Pmcn |
a (Å) | 4.0150 | 4.0081 | 5.3130 |
b (Å) | 4.0150 | 4.0081 | 8.9038 |
c (Å) | 3.9984 | 4.0081 | 6.4361 |
α (°) | 90 | 90 | 90 |
β (°) | 90 | 90 | 90 |
γ (°) | 90 | 90 | 90 |
Volume (Å3) | 64.45 | 64.392 | 304.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Li, X.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Fu, Y.; Ma, J. Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field. Catalysts 2022, 12, 987. https://doi.org/10.3390/catal12090987
Chen P, Li X, Ren Z, Wu J, Li Y, Liu W, Li P, Fu Y, Ma J. Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field. Catalysts. 2022; 12(9):987. https://doi.org/10.3390/catal12090987
Chicago/Turabian StyleChen, Peng, Xiu Li, Zeqian Ren, Jizhou Wu, Yuqing Li, Wenliang Liu, Peng Li, Yongming Fu, and Jie Ma. 2022. "Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field" Catalysts 12, no. 9: 987. https://doi.org/10.3390/catal12090987
APA StyleChen, P., Li, X., Ren, Z., Wu, J., Li, Y., Liu, W., Li, P., Fu, Y., & Ma, J. (2022). Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field. Catalysts, 12(9), 987. https://doi.org/10.3390/catal12090987