Bifunctional Co3O4/ZSM-5 Mesoporous Catalysts for Biodiesel Production via Esterification of Unsaturated Omega-9 Oleic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural Properties: Nitrogen Physisorption Analysis
2.2. Co Content and Si/Al Molar Ratio Determination: Atomic Absorption Spectroscopy (AAS)
2.3. Crystalline Structure: X-ray Diffraction Analysis
2.4. Surface Species: Raman Spectroscopy
2.5. Surface Acidity: In Situ FTIR Spectroscopy of Pyridine Adsorption (FTIR-Py)
2.6. Reducability: TPR-H2
2.7. Morphological Feature
2.8. Catalytic Evaluation and Biodiesel Production
2.8.1. Oleic Acid Conversion and Biodiesel Yield
2.8.2. Biodiesel Characterization by FTIR
2.9. Discussion of the Bifunctional Mechanism
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.2.1. N2 Adsorption–Desorption Isotherms
3.2.2. Atomic Absorption (AA) Spectroscopy
3.2.3. X-ray Diffraction (XRD)
3.2.4. Raman Spectroscopy
3.2.5. In Situ FTIR of Pyridine Adsorption
3.2.6. H2-Temperature Programmed Reduction (H2-TPR)
3.2.7. Transmission Electron Microscopy (TEM)
3.3. Catalytic Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melero, J.A.; Bautista, L.F.; Iglesias, J.; Morales, G.; Sanchez, R. Production of biodiesel from waste cooking oil in a continuous packed bed reactor with an agglomerated Zr-SBA-15/bentonite catalyst. Appl. Catal. B Environ. 2014, 145, 197–204. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotech. Adv. 2010, 28, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-M.; Harshavardhan, S.J.; Sridhar, C.; Kumar, D.; Jang, K. Synthesis of POSS derived organic-inorganic hybrid esters for insulating oil applications. Bull. Korean Chem. Soc. 2014, 35, 2769–2773. [Google Scholar] [CrossRef]
- Chew, T.L.; Bhatia, S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour. Technol. 2008, 99, 7911–7922. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, M.C.; Lin, W.T.; Chiu, W.C.; Hou, S.S. Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method. Energies 2021, 14, 3703. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Helian, Y.; Li, C.; Wu, Z.; Li, H.; Chu, H.; Wang, Y.; Wang, Y.; Lu, W.; et al. Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review. Energy Convers. Manag. 2021, 229, 113760. [Google Scholar] [CrossRef]
- Zakaria, Z.Y.; Linnekoski, J.; Amin, N.A.S. Catalyst screening for conversion of glycerol to light olefins. Chem. Eng. J. 2012, 207–208, 803–813. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Kawashima, A.; Matsubara, K.; Honda, K. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresour. Technol. 2009, 100, 696–700. [Google Scholar] [CrossRef]
- Kouzu, M.; Tsunomori, M.; Yamanaka, S.; Hidaka, J. Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Adv. Powder Technol. 2010, 21, 488–494. [Google Scholar] [CrossRef]
- Suryaputra, W.; Winata, I.; Indraswati, N.; Ismadji, S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 2013, 50, 795–799. [Google Scholar] [CrossRef]
- Prabu, M.; Manikandan, M.; Kandasamy, P.; Kalaivani, P.; Rajendiran, N.; Raja, T. Synthesis of biodiesel using the Mg/Al/Zn hydrotalcite/SBA-15 nanocomposite catalyst. ACS Omega 2019, 4, 3500–3507. [Google Scholar] [CrossRef]
- Shibasaki, N.; Honda, H.; Kuribayashi, H.; Toda, T.; Fukumura, T.; Yonemoto, T. Biodiesel production using ionic ion exchange resin as heterogeneous catalyst. Bioresour. Technol. 2007, 98, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.G.; Dalai, A.K. Waste cooking oil-an economical source for biodiesel: A review. Ind. Eng. Chem. Res. 2006, 45, 2901–2913. [Google Scholar] [CrossRef]
- Snåre, M.; Mäki, P.; Simakova, I.L.; Myllyoja, J.; Murzin, D.Y. Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russian J. Phys. Chem. B 2009, 3, 1035–1043. [Google Scholar] [CrossRef]
- Lestari, S.; Simakova, I.; Tokarev, A.; Mäki, P.; Eränen, K.; Murzin, D.Y. Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal. Letts. 2008, 122, 247–251. [Google Scholar] [CrossRef]
- Mäki, P.; Snåre, M.; Eränen, K.; Myllyoja, J.; Murzin, D.Y. Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 2008, 87, 3543–3549. [Google Scholar] [CrossRef]
- Simakova, I.L.; Simakova, O.A.; Romanenko, A.V.; Murzin, D.Y. Hydrogenation of vegetable oils over Pd on nanocomposite carbon catalysts. Ind. Eng. Chem. Res. 2008, 47, 7219–7225. [Google Scholar] [CrossRef]
- Fu, J.; Lu, X.; Savage, P.E. Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 2011, 4, 481–486. [Google Scholar] [CrossRef]
- Madsen, A.T.; Ahmed, E.H.; Christensen, C.H.; Fehrmann, R.; Riisager, A. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst. Fuel 2011, 90, 3433–3438. [Google Scholar] [CrossRef]
- Han, J.; Sun, H.; Ding, Y.; Lou, H.; Zheng, X. Palladium-catalyzed decarboxylation of higher aliphatic esters: Towards a new protocol to the second-generation biodiesel production. Green Chem. 2010, 12, 463–467. [Google Scholar] [CrossRef]
- Han, J.; Sun, H.; Duan, J.; Ding, Y.; Lou, H.; Zheng, X. Palladium-Catalyzed Transformation of Renewable Oils into Diesel Components. Adv. Synth. Catal. 2010, 352, 1805–1809. [Google Scholar] [CrossRef]
- Lestari, S.; Mäki, P.; Eränen, K.; Beltramini, J.; Max, G.Q.; Murzin, D.Y. Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts. Catal. Letts. 2009, 134, 250–257. [Google Scholar] [CrossRef]
- Huber, G.W.; Corma, A. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem. Int. Ed. 2007, 46, 7184–7201. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef]
- Huber, G.W.; O’Connor, P.; Corma, A. Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A 2007, 329, 120–129. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Gao, L.J.; Shang, Q.Q.; Zhou, J.J.; Xiao, G.M.; Wei, R.P. Esterification of Oleic Acid in Biodiesel Synthesis with SO42−/ZrO2/MCM-41 as Catalyst. Asian J. Chem. 2013, 25, 6579–6583. [Google Scholar] [CrossRef]
- Narasimharao, K.; Brown, D.R.; Lee, A.F.; Newman, A.D.; Siril, P.F.; Tavener, S.J.; Wilson, K. Structure–activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J. Catal. 2007, 248, 226–234. [Google Scholar] [CrossRef]
- Karinen, R.S.; Krause, A.O.I. New biocomponents from glycerol. Appl. Catal. A Gen. 2006, 306, 128–133. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Song, J.; Li, W.; Li, P.; Xu, R.; Ma, H.; Tian, Z. High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst. Catal. Today 2014, 234, 153–160. [Google Scholar] [CrossRef]
- Silva, V.J.; Rodrigues, J.J.; Soares, R.R.; Napolitano, M.N.; Rodrigues, M.G. Cobalt supported on ZSM-5 zeolite using kaolin as silicon and aluminun sources for fischer-tropsch synthesis. Braz. J. Petrol. Gas 2013, 7, 083–094. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Evertt, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solids systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Cheng, J.P.; Chen, X.; Wu, J.S.; Liu, F.; Zhang, X.B.; Dravid, V.P. Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes. Cryst. Eng. Comm. 2012, 14, 6702–6709. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Veintemillas, S.; Bomati, M.O.; Morales, M.P.; Xu, H.B. Thermal history dependence of the crystal structure of Co fine particles. Phys. Rev. B 2005, 71, 024106. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, W.; Qin, F.; Fang, H.; Hadjiev, V.G.; Litvinov, D.; Bao, J. Identification of cobalt oxides with Raman Scattering and Fourier Transform Infrared Spectroscopy. J. Phys. Chem. C 2016, 120, 4511–4516. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2007; Available online: http://www.iza-structure.org/books/Atlas_6ed.pdf (accessed on 20 May 2022).
- Rivas, B.; Salgueiriño, V. Thermodynamic CoO–Co3O4 crossover using Raman spectroscopy in magnetic octahedronshaped nanocrystals. J Raman Spectrosc. 2017, 48, 837–841. [Google Scholar] [CrossRef]
- Jongsomjit, B.; Goodwin, J. Co-support compound formation in Co/Al2O3 catalysts: Effect of reduction gas containing CO. Catal. Today 2002, 77, 91–204. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid Catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
- Morterra, C.; Magnacca, G. Surface characterization of modified aluminas. Part 4. Surface hydration and Lewis acidity of CeO2–Al2O3 systems. J. Chem. Soc. Faraday Trans. 1996, 92, 1991–1999. [Google Scholar] [CrossRef]
- González, J.; Wang, J.A.; Chen, L.F.; Manríquez, M.E.; Dominguez, J.M. Structural Defects, Lewis Acidity and Catalysis Properties of Mesostructured WO3/SBA-15 Nanocatalysts. J. Phys. Chem. C 2017, 121, 23988–23999. [Google Scholar] [CrossRef]
- Lohse, U.; Löfer, E.; Hunger, M.; Stöckner, J.; Patzelova, V. Hydroxyl groups of the non-framework aluminium species in dealuminated Y zeolites. Zeolites 1987, 7, 11–13. [Google Scholar] [CrossRef]
- Chromčáková, Ž.; Obalová, L.; Kovanda, F.; Legut, D.; Titov, A.; Ritz, M.; Fridrichová, D.; Michalik, S.; Kuśtrowski, P.; Jirátová, K. Effect of precursor synthesis on catalytic activity of Co3O4 in N2O decomposition. Catal. Today 2015, 257, 18–25. [Google Scholar] [CrossRef]
- Boix, A.; Miro, E.; Lombardo, E.; Bañanes, M.; Mariscal, R.; Fierro, J. The nature of cobalt species in Co and PtCoZSM-5 used for the SCR of NOx with CH4. J. Catal. 2003, 217, 186–194. [Google Scholar] [CrossRef]
- Mohebbi, S.; Rostamizadeh, M.; Kahforoushan, D. Efficient sulfated high silica ZSM-5 nanocatalyst for esterification of oleic acid with metanol. Microporous Mesoporous Mater. 2020, 294, 109845. [Google Scholar] [CrossRef]
- Costa, A.A.; Braga, P.R.S.; de Macedo, J.L.; Dias, J.A.; Dias, S.C.L. Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous Mesoporous Mater. 2012, 147, 142–148. [Google Scholar] [CrossRef]
- Narkhede, N.; Patel, A. Efficient synthesis of biodiesel over a recyclable catalyst comprising a monolacunary silicotungstate and zeolite H-beta. RSC Adv. 2014, 4, 64379–64387. [Google Scholar] [CrossRef]
- Gomes, G.J.; Dal Pozzo, D.M.; Zalazar, M.F.; Costa, M.B.; Arroyo, P.A.; Bittencourt, P.R.S. Oleic Acid Esterification Catalyzed by Zeolite Y-Model of the Biomass Conversion. Top. Catal. 2019, 62, 874–883. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, X.; Chen, X.; Sun, D.; Yu, X. Direct FTIR analysis of free fatty acids in edible oils using disposable polyethylene film. Food Anal. Methods 2015, 8, 857–863. [Google Scholar] [CrossRef]
- Rabelo, S.N.; Ferraz, V.P.; Oliveira, L.S.; Franca, A.S. FTIR Analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. Int. J. Environ. Sci. Dev. 2015, 6, 964–969. [Google Scholar] [CrossRef]
- Muik, B.; Lendl, B.; Molina, A.; Pérez, L.; Ayora, M.J. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Anal. Bioanal. Chem. 2004, 379, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Shapaval, V.; Brandenburg, J.; Blomqvist, J.; Tafintseva, V.; Passoth, V.; Sandgren, M.; Kohler, A. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnol. Biofuels 2019, 12, 140. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Narkhede, N. Biodiesel synthesis via esterification and transesterification over a new heterogeneous catalyst comprising lacunary silicotungstate and MCM-41. Catal. Sci. Technol. 2013, 3, 3317–3325. [Google Scholar] [CrossRef]
- Pimentel, M.F.; Ribeiro, G.M.; Da Cruz, R.S.; Stragevitch, L.; Pacheco, J.; Teixeira, L. Determination of biodiesel content when blended with mineral diesel fuel using infrared spectroscopy and multivariate calibration. Microchem. J. 2006, 82, 201–206. [Google Scholar] [CrossRef]
- De Lira, L.; De Vasconcelos, F.; Pereira, C.F.; Silveira, A.; Stragevitch, L.; Pimentel, M. Prediction of properties of diesel/biodiesel blends by infrared spectroscopy and multivariate calibration. Fuel 2010, 89, 405–409. [Google Scholar] [CrossRef]
- Coronado, M.A.; Montero, G.; García, C.; Valdez, B.; Ayala, R.; Pérez, A. Quality Assessment of Biodiesel Blends Proposed by the New Mexican Policy Framework. Energies 2017, 10, 631. [Google Scholar] [CrossRef]
- Samanta, S.; Sahoo, R.R. Waste Cooking (Palm) Oil as an Economical Source of Biodiesel Production for Alternative Green Fuel and Efficient Lubricant. Bioenerg. Res. 2021, 14, 163–174. [Google Scholar] [CrossRef]
- Cruz, M.; Almeida, M.F.; Alvim, M.D.C.; Dias, J.M. Monitoring Enzymatic Hydroesterification of Low-Cost Feedstocks by Fourier Transform InfraRed Spectroscopy. Catalysts 2019, 9, 535. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Rashid, U. Supported solid and heteropoly acid catalysts for production of biodiesel. Catal. Rev. 2017, 59, 165–188. [Google Scholar] [CrossRef]
- Brahmkhatri, V.; Patel, A. 12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids. Appl. Catal. A 2011, 403, 161–172. [Google Scholar] [CrossRef]
- Endalew, A.K.; Kiros, Y.; Zanzi, R. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenerg. 2011, 35, 3787–3809. [Google Scholar] [CrossRef]
Catalyst | BET Area (m2/g) | Average Pore Diameter (Å) |
---|---|---|
ZSM-5-A | 408 | 86 |
ZSM-5-B | 398 | 75 |
1Co/ZSM-5-A | 402 | 81 |
5Co/ZSM-5-A | 382 | 67 |
10Co/ZSM-5-A | 346 | 59 |
1Co/ZSM-5-B | 366 | 69 |
5Co/ZSM-5-B | 353 | 60 |
10Co/ZSM-5-B | 321 | 47 |
Catalysts | Real Co Content (wt%) | Nominal Co Content (wt%) | Si/Al Molar Ratio |
---|---|---|---|
ZSM-5-A | 49.3 | ||
ZSM-5-B | 148.6 | ||
1Co/ZSM-5-A | 1.04 | 1 | 70.6 |
5Co/ZSM-5-A | 4.80 | 5 | 62.1 |
10Co/ZSM-5-A | 9.89 | 10 | 64.6 |
1Co/ZSM-5-B | 0.96 | 1 | 145.7 |
5Co/ZSM-5-B | 4.86 | 5 | 146.4 |
10Co/ZSM-5-B | 9.89 | 10 | 148.2 |
Catalysts | Feedstock | Alcohol to Oleic Acid Ratio | Reaction Condition | Conversion (%) | Ref. |
---|---|---|---|---|---|
SO42−/ZSM-5 | Oleic acid and methanol | 20:1 | Catal. concentration: 5 wt%; 190 °C, 8 h | 97.0 | [46] |
20.5% WO3/USY | Oleic acid and ethanol | 6:1 | Catal. concentration: 10 wt%, 200 °C, 2h. | 77.9 | [47] |
Zeolite-Hβ | Oleic acid and methanol | 20:1 | Catal. concentration: 3.5 wt%, 60 °C, 10 h. | 82.0 | [48] |
FAU zeolites-Y | Oleic acid and methanol | 3:1 | Catal. concentration: 10 wt%, 100 °C, 5 h. | 92.0 | [49] |
Co3O4/ZSM-5-B | Oleic acid and methanol | 30:1 | Catal. concentration: 2 wt%, 160 °C, 3 h. | 95.1 | This work |
Peak No. | Frequency (cm−1) | Band Assignments |
---|---|---|
1 | 725 | CH2 deformation, bending |
2 | 920 | C–OH stretching –OH bending |
3 | 980 | C–OH stretching |
4 | 1100 | C–OH stretching |
5 | 1200 | C–O stretching and C–O–C deformation |
6 and 7 | 1250–1260 | C–O stretching |
8 | 1380 | stretching –CH3 of acyl chains (–COOCH3) |
9 | 1485 | C–H deformation or bending in –CH2 and –CH3 groups |
10 | 1720 | C=O stretching in –COOH |
11 | 1730 | C=O stretching in –COOCH3 |
12 | 2850 | C–H symmetric stretching in –CH2 |
13 | 2925 | C–H asymmetric stretching in –CH2 |
14 | 2955 | C–H asymmetric stretching in –CH3 in acyl chains |
15 | 3010 | C–H stretching in =C–H, C=C double bond |
16 | 3600 | –OH stretching in water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez, F.; Chen, L.; Wang, J.A.; Flores, S.O.; Salmones, J.; Arellano, U.; Noreña, L.E.; Tzompantzi, F. Bifunctional Co3O4/ZSM-5 Mesoporous Catalysts for Biodiesel Production via Esterification of Unsaturated Omega-9 Oleic Acid. Catalysts 2022, 12, 900. https://doi.org/10.3390/catal12080900
Núñez F, Chen L, Wang JA, Flores SO, Salmones J, Arellano U, Noreña LE, Tzompantzi F. Bifunctional Co3O4/ZSM-5 Mesoporous Catalysts for Biodiesel Production via Esterification of Unsaturated Omega-9 Oleic Acid. Catalysts. 2022; 12(8):900. https://doi.org/10.3390/catal12080900
Chicago/Turabian StyleNúñez, Francisco, Lifang Chen, Jin An Wang, Sergio Ordin Flores, José Salmones, Ulises Arellano, Luis Enrique Noreña, and Francisco Tzompantzi. 2022. "Bifunctional Co3O4/ZSM-5 Mesoporous Catalysts for Biodiesel Production via Esterification of Unsaturated Omega-9 Oleic Acid" Catalysts 12, no. 8: 900. https://doi.org/10.3390/catal12080900