Engineering Noble Metal-like Bi onto Hierarchical SrWO4 for the Enhancement of Photocatalytic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Growth Mechanism
2.3. Charge Separation
2.4. Photocatalytic Hydrogen Production Activities
2.5. Photocatalysis Mechanism and Stability
3. Materials and Methods
3.1. Chemical Reagents
3.2. Characterization
3.3. Synthesis of Photocatalyst
3.4. Photocatalytic Hydrogen Evolution Reaction
3.5. Photoelectrochemical Measurements
3.6. Sample Preparation for Single-Particle PL Experiments
3.7. Single-Particle Pl Measurements by Confocal Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.C.; Yang, G.S.; Jiang, H.R.; Zhao, S.L.; Liu, Q.Y.; Xie, Y.S. Organic sensitizers with extended conjugation frameworks as cosensitizers of porphyrins for developing efficient dye-sensitized solar cells. ACS Appl. Mater. Inter. 2018, 10, 38880–38891. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.X.; Yin, L.S.; Cao, G.J.; Huang, Q.L.; He, M.S.; Wei, W.X.; Zhao, H.; Zhang, D.E.; Wang, M.Y.; Yang, T. Pt-Pd bimetal popcorn nanocrystals: Enhancing the catalytic performance by combination effect of stable multipetals nanostructure and highly accessible active sites. Small 2018, 14, 1703613. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Wei, W.; Liu, X.; Gu, Y.J. Research progress on polymer heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2012, 98, 129–145. [Google Scholar] [CrossRef]
- Li, P.S.; Duan, X.X.; Kuang, Y.; Li, Y.P.; Zhang, G.X.; Liu, W.; Sun, X.M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341. [Google Scholar] [CrossRef]
- Hang, L.F.; Zhang, T.; Sun, Y.Q.; Men, D.D.; Lu, X.J.; Zhang, Q.L.; Cai, W.P.; Li, Y. Ni0.33Co0.67MoS4 nanosheets as a bifunctional electrolytic water catalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 19555–19562. [Google Scholar] [CrossRef]
- Yan, H.J.; Yang, J.H.; Ma, G.J.; Wu, G.P.; Zong, X.; Lei, Z.B.; Shi, J.Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168. [Google Scholar] [CrossRef]
- Xiang, Q.J.; Yu, J.G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J.C.; Lu, G.Q.; Cheng, H.M. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783. [Google Scholar] [CrossRef]
- Anucha, C.B.; Bacaksiz, E.; Stathopoulos, V.N.; Pandis, P.K.; Argirusis, C.; Andreouli, C.D.; Tatoudi, Z.; Altin, I. Preparation and Characterization of Supported Molybdenum Doped TiO2 on α-Al2O3 Ceramic Substrate for the Photocatalytic Degradation of Ibuprofen (IBU) under UV Irradiation. Catalysts 2022, 12, 562. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, B.; Chen, Q.; Bai, Z.; Cao, Y.; Davaa, B. Synthesis, Structure, and Photocatalytic Activity of TiO2-Montmorillonite Composites. Catalysts 2022, 12, 486. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 32485–32534. [Google Scholar] [CrossRef]
- Xiong, T.; Cen, W.L.; Dong, F.; Zhang, Y.X. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472. [Google Scholar] [CrossRef]
- Pikuda, O.; Garlisi, C.; Palmisano, G.; Scandura, G. Micro-mesoporous N-doped brookite-rutile TiO2 as efficient catalysts for water remediation under UV-free visible LED radiation. J. Catal. 2017, 346, 109–116. [Google Scholar] [CrossRef]
- Wen, J.Q.; Xie, J.; Yang, Z.H.; Shen, R.C.; Li, H.Y.; Luo, X.Y.; Chen, X.B.; Li, X. Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: An insight into the trifunctional roles of nanocarbons. ACS Sustain. Chem. Eng. 2017, 5, 2224–2236. [Google Scholar] [CrossRef]
- He, W.J.; Sun, Y.J.; Jiang, G.M.; Li, Y.H.; Zhang, X.M.; Zhang, Y.X.; Zhou, Y.; Dong, F. Defective Bi4MoO9/Bi metal core/shell heterostructure: Enhanced visible light photocatalysis and reaction mechanism. Appl. Catal. B Environ. 2018, 239, 619–627. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, P.F.; Yue, M.F.; Yang, D.F.; Cong, R.H.; Gao, W.L.; Yang, T.J. Bi2Ga4O9: An undoped single-phase photocatalyst for overall water splitting under visible light. J. Catal. 2017, 345, 236–244. [Google Scholar] [CrossRef]
- Zhang, G.G.; Lan, Z.A.; Wang, X.C. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2016, 55, 15712–15727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.G.; Lan, Z.A.; Lin, L.H.S.; Wang, X.C. Overall water splitting by Pt/gC3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Li, Q.Y.; Sun, Y.J.; Ho, W.K. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 2014, 4, 4341–4350. [Google Scholar] [CrossRef]
- Xiong, T.; Dong, A.H.; Huang, W.; Cen, W.L.; Zhang, Y.X.; Dong, F. Single precursor mediated-synthesis of Bi semimetal deposited N-doped (BiO)2CO3 superstructures for highly promoted photocatalysis. ACS Sustain. Chem. Eng. 2016, 4, 2969–2979. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, L.Y.; Fu, Y.; Chu, X.L. Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 2013, 233, 305–314. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, Z.W.; Sun, Y.J.; Zhang, Y.X.; Yan, S.; Wu, Z.B. An advanced semimetal–organic Bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol. 2015, 49, 12432–12440. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.X.; Huang, Y.; Li, Y.; Zhang, Q.; Cao, J.J.; Ho, W.K.; Lee, S.C. Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal under visible light. ACS Sustain. Chem. Eng. 2016, 4, 6912–6920. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, D.Z.; Yang, J.F.; Wang, C.A. Strong metal-support interactions induced by an ultrafast laser. Nat. Commun. 2021, 12, 6665. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Liu, Y.N.; Shen, C.C.; Xu, A.W. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chin. J. Catal. 2017, 38, 1295–1306. [Google Scholar] [CrossRef]
- Solís, M.; Rincón, M.E.; Calva, J.C.; Alvarado, G. Bismuth sulfide sensitized TiO2 arrays for photovoltaic applications. Electrochim. Acta 2013, 112, 159–163. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Lu, G.X.; Li, S.B. The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B. J. Phys. Chem. C 2009, 113, 9950–9955. [Google Scholar] [CrossRef]
- Villa, K.; Black, A.; Domenech, X.; Peral, J. Nitrogen doped TiO2 for hydrogen production under visible light irradiation. Solar Energy 2012, 86, 558–566. [Google Scholar] [CrossRef]
- Naik, B.; Martha, S.; Parida, K.M. Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2011, 36, 2794–2802. [Google Scholar] [CrossRef]
- Lin, H.; Shih, C.Y. Efficient one-pot microwave-assisted hydrothermal synthesis of M (M= Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J. Mol. Catal. A Chem. 2016, 411, 128–137. [Google Scholar] [CrossRef]
- Sreethawong, T.; Laehsalee, S.; Chavadej, S. Comparative investigation of mesoporous-and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. Int. J. Hydrogen Energy 2008, 33, 5947–5957. [Google Scholar] [CrossRef]
- Nagirnyi, V.; Feldbach, E.; Jönsson, L.; Kirm, M.; Kotlov, A.; Lushchik, A.; Nagornaya, L.L.; Savikhin, F.; Svensson, G. Study of oriented CdWO4 scintillating crystals using synchrotron radiation. Radiat. Meas. 2001, 33, 601–604. [Google Scholar] [CrossRef]
- Millers, D.; Grigorjeva, L.; Chernov, S.; Popov, A.; Lecoq, P.; Auffray, E. The temperature dependence of scintillation parameters in PbWO4 crystals. Phys. Status Solidi B 1997, 203, 585–589. [Google Scholar] [CrossRef]
- Lin, J.; Lin, J.; Zhu, Y.F. Controlled Synthesis of the ZnWO4 Nanostructure and Effects on the Photocatalytic Performance. Inorg. Chem. 2007, 46, 8372–8378. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Wang, Y.J.; Li, D.; Xu, J.; Zhu, Y.F. Synthesis of ZnWO4 nanorods with [100] orientation and enhanced photocatalytic propertie. Appl. Catal. B Environ. 2010, 100, 173–178. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, Y.F. Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis. Environ. Sci. Technol. 2006, 40, 3367–3372. [Google Scholar] [CrossRef]
- Mao, Y.; Wong, S.S. General, room-temperature method for the synthesis of isolated as well as arrays of single-crystalline ABO4-type nanorods. J. Am. Chem. Soc. 2004, 126, 15245–15252. [Google Scholar] [CrossRef]
- Li, Q.; Bai, X.X.; Luo, J.Y.; Li, C.Y.; Wang, Z.N.; Wu, W.W.; Liang, Y.P.; Zhao, Z.H. Fe doped SrWO4 with tunable band structure for photocatalytic nitrogen fixation. Nanotechnology 2020, 31, 375402. [Google Scholar] [CrossRef]
- Trentelman, K.; Turner, C. Investigation of the painting materials and techniques of the late-15th century manuscript illuminator Jean Bourdichon. J. Raman Spectrosc. 2009, 40, 585–589. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Y.; Wang, F.; Dong, F.; Li, W.; Li, H.M.; Patzke, G.R. From semiconductors to semimetals: Bismuth as a photocatalyst for NO oxidation in air. J. Mater. Chem. A 2014, 2, 11065–11072. [Google Scholar] [CrossRef]
- Cheng, H.F.; Huang, B.B.; Lu, J.B.; Wang, Z.Y.; Xu, B.; Qin, X.Y.; Zhang, X.Y.; Dai, Y. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Phys. Chem. Chem. Phys. 2010, 12, 15468–15475. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.W.; Zhang, W.D.; Sun, Y.J.; Yu, J.Y.; Zhang, Y.X.; Wang, H.; Dong, F.; Wu, Z.B. Bi Cocatalyst/Bi2MoO6 Microspheres Nanohybrid with SPR-Promoted Visible-Light Photocatalysis. J. Phys. Chem. C 2016, 120, 11889–11898. [Google Scholar] [CrossRef]
- Li, F.; Zhao, W.; Leung, D.Y.C. Enhanced photoelectrocatalytic hydrogen production via Bi/BiVO4 photoanode under visible light irradiation. Appl. Catal. B Environ. 2019, 258, 117954. [Google Scholar] [CrossRef]
- Tavakoli, F.; Salavati-Niasari, M.; Ghanbari, D.; Saberyan, K. Hosseinpour-Mashkani, S.M. Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures. Mater. Res. Bull. 2014, 49, 14–20. [Google Scholar] [CrossRef]
- Rather, R.A.; Sarwara, R.K.; Das, N.; Pal, B. Impact of reducing and capping agents on carbohydrates for the growth of Ag and Cu nanostructures and their antibacterial activities. Particuology 2019, 43, 219–226. [Google Scholar] [CrossRef]
- Li, X.Z.; Li, F.B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 2001, 35, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.X.; Chen, B.B.; Xie, L.Y.; Zheng, Z.Y.; Liu, P. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A 2013, 1, 3068–3075. [Google Scholar] [CrossRef]
- Zhang, P.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Efficient charge separation on 3D architectures of TiO2 mesocrystals packed with a chemically exfoliated MoS2 shell in synergetic hydrogen evolution. Chem. Commun. 2015, 51, 7187–7190. [Google Scholar] [CrossRef]
- Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Jeon, T.H.; Koo, M.S.; Kim, H.J.; Choi, W.Y. Dual-functional photocatalytic and photoelectrocatalytic systems for energy-and resource-recovering water treatment. ACS Catal. 2018, 8, 11542–11563. [Google Scholar] [CrossRef]
- Wei, Z.D.; Liu, J.Y.; Shangguan, W.F. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Ouyang, S.X.; Ye, J.H. Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J. Phys. Chem. C 2011, 115, 15778–15784. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Zhao, J.; Wang, X.; Wang, J.; Zhang, P. Engineering Noble Metal-like Bi onto Hierarchical SrWO4 for the Enhancement of Photocatalytic Activity. Catalysts 2022, 12, 787. https://doi.org/10.3390/catal12070787
Tang L, Zhao J, Wang X, Wang J, Zhang P. Engineering Noble Metal-like Bi onto Hierarchical SrWO4 for the Enhancement of Photocatalytic Activity. Catalysts. 2022; 12(7):787. https://doi.org/10.3390/catal12070787
Chicago/Turabian StyleTang, Liang, Jian Zhao, Xiao Wang, Jiajun Wang, and Peng Zhang. 2022. "Engineering Noble Metal-like Bi onto Hierarchical SrWO4 for the Enhancement of Photocatalytic Activity" Catalysts 12, no. 7: 787. https://doi.org/10.3390/catal12070787
APA StyleTang, L., Zhao, J., Wang, X., Wang, J., & Zhang, P. (2022). Engineering Noble Metal-like Bi onto Hierarchical SrWO4 for the Enhancement of Photocatalytic Activity. Catalysts, 12(7), 787. https://doi.org/10.3390/catal12070787