Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis
Abstract
:1. Introduction
- When irradiated with light, it is nontoxic, photo-stable, inexpensive, and extremely effective.
- The photodegradation of organic contaminants by titanium oxide immobilization on carbon supports has recently received a lot of interest. We use one of the titanium oxide components as a titanium oxide composite matrix.
- Moreover, active carbon has a far-reaching effect on HTiO2′s catalytic properties, which goes beyond a simple synergistic effect on degradation rates.
- Crucially, due to the AC’s porous support and the fact that it includes the amorphous silica, HTiO2@AC/SiO2 has a greater activity because it facilitates adsorption between the catalyst and the substrate. Since photogenerated oxidizing species (•OH) do not travel far from the HTiO2 active centers, catalytic breakdown occurs mostly at the catalyst/water contact.
- We hypothesize that the HTiO2@AC/SiO2 is able to absorb and/or further oxidize the intermediates formed during degradation to minimize the secondary pollution they cause [16]. It has been determined that activated carbon (AC) with a high specific surface area and porosity is most suited for textile waste treatment [17].
2. Results and Discussion
2.1. Material Characterization
2.1.1. X-ray Diffractometry
2.1.2. Morphology of HTiO2@AC/SiO2 Nanocomposite
2.1.3. Surface Properties of Prepared Nanomaterials
2.1.4. Optical Characterization of AC/SiO2 and HTiO2@AC/SiO2 Composite
2.2. Batch Studies
2.2.1. The Effect of pH
2.2.2. HTiO2@AC/SiO2 Dosage Effect
2.2.3. Initial Concentration Effect
2.2.4. The Effect of Stirring
2.2.5. Temperature Impact
2.2.6. The Effect of Contact Time
2.3. Models Studies
2.3.1. Isothermal Model
2.3.2. Langmuir Isotherm
2.3.3. Freundlich Isotherm
2.3.4. Kinetic and Diffusion Models
2.3.5. The Pseudo-First-Order Kinetic Model
2.3.6. The Pseudo-Second-Order Model
2.3.7. Intraparticle Diffusion Model
2.4. Thermodynamic Study
2.5. Reusing of the Photocatalytic Materials
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Activated Carbon Silica Composite from Rice Straw
3.3. Carbonization Step
3.4. Activation Step
3.5. Synthesis of Nanocomposite HTiO2@AC/SiO2
3.6. Photocatalytic Activity
3.7. Characterization Tools
3.8. Adsorption Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Chen, C.; Sun, H. LiVPO4F@C particles anchored on boron-doped graphene sheets with outstanding Li+ storage performance for high-voltage Li-ion battery. Solid State Ion. 2019, 331, 6–11. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Challis, J.K.; Cuscito, L.D.; Joudan, S.; Luong, K.H.; Knapp, C.W.; Hanson, M.L.; Wong, C.S. Inputs, source apportionment, and transboundary transport of pesticides and other polar organic contaminants along the lower Red River, Manitoba, Canada. Sci. Total Environ. 2018, 635, 803–816. [Google Scholar] [CrossRef] [Green Version]
- Posthuma, L.; Zijp, M.C.; De Zwart, D.; Van de Meent, D.; Globevnik, L.; Koprivsek, M.; Focks, A.; Van Gils, J.; Birk, S. Chemical pollution imposes limitations to the ecological status of European surface waters. Sci. Rep. 2020, 10, 14825. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Zhang, S.; Jiao, Z.; Zhao, X.; Sun, M.; Feng, X. Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice. Environ. Pollut. 2021, 289, 117710. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Trojanowicz, M. Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Sci. Total Environ. 2020, 718, 134425. [Google Scholar] [CrossRef]
- Bel Hadjltaief, H.; Omri, A.; Ben Zina, M.; Da Costa, P.; Galvez, M.E. Titanium Dioxide Supported on Different Porous Materials as Photocatalyst for the Degradation of Methyl Green in Wastewaters. Adv. Mater. Sci. Eng. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dutt, M.A.; Hanif, M.A.; Nadeem, F.; Bhatti, H.N. A review of advances in engineered composite materials popular for wastewater treatment. J. Environ. Chem. Eng. 2020, 8, 104073. [Google Scholar] [CrossRef]
- Szczepanik, B.; Rogala, P.; Słomkiewicz, P.M.; Banaś, D.; Kubala-Kukuś, A.; Stabrawa, I. Synthesis, characterization and photocatalytic activity of TiO2-halloysite and Fe2O3-halloysite nanocomposites for photodegradation of chloroanilines in water. Appl. Clay Sci. 2017, 149, 118–126. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Shan, R.; Shi, Y.; Wang, S.; Yuan, H. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 2019, 222, 391–398. [Google Scholar] [CrossRef]
- Pinna, M.; Binda, G.; Altomare, M.; Marelli, M.; Dossi, C.; Monticelli, D.; Spanu, D.; Recchia, S. Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts 2021, 11, 1048. [Google Scholar] [CrossRef]
- Pastrana-Martínez, L.; López-Ramón, M.; Moreno-Castilla, C. Adsorption and thermal desorption of the herbicide fluroxypyr on activated carbon fibers and cloth at different pH values. J. Colloid Interface Sci. 2009, 331, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Kumar, A.; Dhodapkar, R.; Pal, S. Adsorption of five emerging contaminants on activated carbon from aqueous medium: Kinetic characteristics and computational modeling for plausible mechanism. Environ. Sci. Pollut. Res. 2021, 28, 21347–21358. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Seczkowska, M.; Tarasiuk, B. Phenoxyacid pesticide adsorption on activated carbon–Equilibrium and kinetics. Chemosphere 2019, 214, 349–360. [Google Scholar] [CrossRef]
- Mohammad, S.G.; Ahmed, S.M. Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media. Int. J. Ind. Chem. 2017, 8, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Kaur, Y.; Bhatia, Y.; Chaudhary, S.; Chaudhary, G.R. Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. J. Mol. Liq. 2017, 234, 94–103. [Google Scholar] [CrossRef]
- Farghali, R.A.; Sobhi, M.; Gaber, S.E.; Ibrahim, H.; Elshehy, E.A. Adsorption of organochlorine pesticides on modified porous Al30/bentonite: Kinetic and thermodynamic studies. Arab. J. Chem. 2020, 13, 6730–6740. [Google Scholar] [CrossRef]
- Vishnu Priyan, V.; Shahnaz, T.; Suganya, E.; Sivaprakasam, S.; Narayanasamy, S. Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies. J. Hazard. Mater. 2021, 403, 123532. [Google Scholar] [CrossRef] [PubMed]
- Ferreira da Silva, A.J.; Paiva de Alencar Moura, M.C.; da Silva Santos, E.; Saraiva Pereira, J.E.; Lins de Barros Neto, E. Copper removal using carnauba straw powder: Equilibrium, kinetics, and thermodynamic studies. J. Environ. Chem. Eng. 2018, 6, 6828–6835. [Google Scholar] [CrossRef]
- Wang, X.Q.; Liu, J.; Zhang, N.; Yang, H. Adsorption, mobility, biotic and abiotic metabolism and degradation of pesticide exianliumi in three types of farmland. Chemosphere 2020, 254, 126741. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, C.; Liu, X.; Ren, W.; Huang, X.; He, M.; Ouyang, W. Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration. Sci. Total Environ. 2021, 778, 146353. [Google Scholar] [CrossRef] [PubMed]
- Gacem, M.A.; Telli, A.; Ould El Hadj Khelil, A. Chapter 15—Nanomaterials for detection, degradation, and adsorption of pesticides from water and wastewater. In Aquananotechnology; Abd-Elsalam, K.A., Zahid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 325–346. [Google Scholar] [CrossRef]
- Rodríguez-Liébana, J.A.; Peña, A. Differences in the sorption kinetics of various non-ionisable pesticides in a limited number of agricultural soils from the Mediterranean basin. J. Environ. Manag. 2020, 276, 111336. [Google Scholar] [CrossRef]
- Selmi, T.; Seffen, M.; Celzard, A.; Fierro, V. Effect of the adsorption pH and temperature on the parameters of the Brouers-Sotolongo models. Environ. Sci. Pollut. Res. Int. 2020, 27, 23437–23446. [Google Scholar] [CrossRef]
- Albroomi, H.I.; Elsayed, M.A.; Baraka, A.; Abdelmaged, M.A. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones. Appl. Water Sci. 2016, 7, 2063–2074. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, F.; Li, J.; Deng, S.; Zhang, S. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 2021, 264, 128556. [Google Scholar] [CrossRef]
- Van Pham, T.; Van Tran, T.; Duy Nguyen, T.; Thi Hong Tham, N.; Thanh Tri Quang, P.; Thi To Uyen, D.; Thi Hong Le, N.; Vo, D.-V.N.; Trung Thanh, N.; Giang Bach, L. Adsorption behavior of Congo red dye from aqueous solutions onto exfoliated graphite as an adsorbent: Kinetic and isotherm studies. Mater. Today Proc. 2019, 18, 4449–4457. [Google Scholar] [CrossRef]
- Mueses, M.A.; Colina-Márquez, J.; Machuca-Martínez, F.; Li Puma, G. Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceuticals and emerging organic contaminants in water. Curr. Opin. Green Sustain. Chem. 2021, 30, 100486. [Google Scholar] [CrossRef]
- Yeganeh, M.; Charkhloo, E.; Reza Sobhi, H.; Esrafili, A.; Gholami, M. Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chem. Eng. J. 2021, 428, 130081. [Google Scholar] [CrossRef]
- Umar, M.; Abdul, H. Photocatalytic Degradation of Organic Pollutants in Water. In Organic Pollutants—Monitoring, Risk and Treatment; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.M.; Taha, M.R.; Taha, O.M.E. Kinetics and isotherms of dichlorodiphenyltrichloroethane (DDT) adsorption using soil–zeolite mixture. Nanotechnol. Environ. Eng. 2018, 3, 4. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A. Microbial fuel cells: Types and applications. In Waste Biomass Management–A Holistic Approach; Springer: Berlin/Heidelberg, Germany, 2017; pp. 367–384. [Google Scholar]
- Nasrollahzadeh, M.S.; Hadavifar, M.; Ghasemi, S.S.; Arab Chamjangali, M. Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Appl. Water Sci. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, B.; Anvaripour, B.; Jorfi, S.; Jaafarzadeh, N. Enhanced Photocatalytic Degradation and Mineralization of Furfural Using UVC/TiO2/GAC Composite in Aqueous Solution. Int. J. Photoenergy 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- El-Maghrabi, H.H.; Hosny, R.; Ramzi, M.; Zayed, M.A.; Fathy, M. Preparation and Characterization of Novel Magnetic ZnFe2O4–Hydroxyapatite Core–Shell Nanocomposite and Its Use as Fixed Bed Column System for Removal of Oil Residue in Oily Wastewater Samples. Egypt. J. Pet. 2019, 28, 137–144. [Google Scholar] [CrossRef]
- Dotto, G.L.; Cadaval, T.; Pinto, L. Preparation of bionanoparticles derived from Spirulina platensis and its application for Cr (VI) removal from aqueous solutions. J. Ind. Eng. Chem. 2012, 18, 1925–1930. [Google Scholar] [CrossRef]
Langmuir Model | Plotting | Material Condition | qo(mg g−1) | KL(L mg−1) | RL | R2 |
---|---|---|---|---|---|---|
HTiO2@AC/SiO2-Dark | 312.76 | 0.030 | 0.077–0.627 | 0.997 | ||
HTiO2@AC/SiO2-Light | 966,708.05 | 1.022 × 10−6 | 0.9996–1 | 0.759 | ||
HTiO2@AC/SiO2-Dark | 290.65 | 0.047 | 0.051–0.517 | 0.983 | ||
HTiO2@AC/SiO2-Light | 264.21 | 0.007 | 0.259–0.875 | 0.309 | ||
Freundlich Model | Kf | n | R2 | |||
HTiO2@AC/SiO2-Dark | 39.056 | 2.654 | 0.986 | |||
HTiO2@AC/SiO2-Light | 4.47 × 10−6 | 0.297 | 0.924 | |||
HTiO2@AC/SiO2-Dark | 30.035 | 2.282 | 0.994 | |||
HTiO2@AC/SiO2-Light | 4.925 | 1.504 | 0.882 | |||
Dubinin–Radushkevich Model | qm | β | E | R2 | ||
HTiO2@AC/SiO2-Dark | 241.72 | 4.41575 × 10−5 | −106.41 | 0.952 | ||
HTiO2@AC/SiO2-Light | 173.94 | 0.0003 | −38.703 | 0.577 | ||
HTiO2@AC/SiO2-Dark | 185.12 | 3.508 × 10−7 | −1193.88 | 0.865 | ||
HTiO2@AC/SiO2-Light | 120.74 | 1.497 × 10−5 | −182.77 | 0.751 | ||
Tempkin Model | b | KT | B | R2 | ||
HTiO2@AC/SiO2-Dark | 58.596 | 1.866 | 42.282 | 0.931 | ||
HTiO2@AC/SiO2-Light | 51.576 | 0.157 | 48.038 | 0.599 | ||
HTiO2@AC/SiO2-Dark | 58.596 | 1.866 | 42.282 | 0.931 | ||
HTiO2@AC/SiO2-Light | 51.576 | 0.157 | 48.038 | 0.599 |
The Pseudo-First-Order Model | Material Condition | k1 min−1 | qe mg g−1 | R2 |
Nonlinear | HTiO2@AC/SiO2-Dark | 0.037 | 22.517 | 0.730 |
HTiO2@AC/SiO2-Light | 0.01 | 10.439 | 0.959 | |
Linear | HTiO2@AC/SiO2-Dark | 0.005 | 6.634 | 0.926 |
HTiO2@AC/SiO2-Light | 0.012 | 10.146 | 0.886 | |
The Pseudo-Second-Order Model | Material Condition | K2 g mg−1 min−1 | qe mg g−1 | R2 |
Nonlinear | HTiO2@AC/SiO2-Dark | 0.0003 | 24.138 | 0.844 |
HTiO2@AC/SiO2-Light | 0.0006 | 14.197 | 0.938 | |
Linear | HTiO2@AC/SiO2-Dark | 0.002 | 25.853 | 0.992 |
HTiO2@AC/SiO2-Light | 0.0006 | 13.925 | 0.858 |
Intraparticle Diffusion Model | Material Condition | k1 mg g−1 min−0.5 | C mg g−1 | R2 |
---|---|---|---|---|
Nonlinear | HTiO2@AC/SiO2-Dark | 1.039 | 0.00 | 0.793 |
HTiO2@AC/SiO2-Light | 1.039 | 0.00 | 0.931 | |
Linear | HTiO2@AC/SiO2-Dark | 0.561 | 14.373 | 0.793 |
HTiO2@AC/SiO2-Light | 0.630 | −0.051 | 0.931 | |
Pore Diffusion Model | kp min−0.5 | Dii cm2 min−1 | R2 | |
HTiO2@AC/SiO2-Dark | 0.053 | 1.361 × 10−8 | 0875 | |
HTiO2@AC/SiO2-Light | 0.015 | 1.120 × 10−9 | 0.938 | |
Film Diffusion Model | kfd min−1 | Dii cm2 min−1 | R2 | |
HTiO2@AC/SiO2-Dark | 0.007 | 6.211 × 10−9 | 0.803 | |
HTiO2@AC/SiO2-Light | 0.002 | 4.544 × 10−9 | 0.9 |
The Thermodynamic Model | Temp. | ΔG (KJ/mol) | ΔH (KJ/mol) | ΔS (KJ/mol) | R2 | Ke Model | |
---|---|---|---|---|---|---|---|
Nonlinear: | 298.15 | HTiO2@AC/SiO2-Dark | −2.542 | −8.024 | −0.018 | 0.971 | 2.762 |
HTiO2@AC/SiO2-Light | −3.167 | −8.850 | −0.019 | 0.971 | 3.563 | ||
Linear: | 298.15 | HTiO2@AC/SiO2-Dark | −2.542 | −8.024 | −0.018 | 0.962 | 1.016 |
HTiO2@AC/SiO2-Light | −3.167 | −8.850 | −0.019 | 0.961 | 1.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Shahawy, A.; Ragab, A.H.; Mubarak, M.F.; Ahmed, I.A.; Mousa, A.E.; Bader, D.M.D. Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts 2022, 12, 163. https://doi.org/10.3390/catal12020163
El Shahawy A, Ragab AH, Mubarak MF, Ahmed IA, Mousa AE, Bader DMD. Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts. 2022; 12(2):163. https://doi.org/10.3390/catal12020163
Chicago/Turabian StyleEl Shahawy, Abeer, Ahmed H. Ragab, Mahmoud F. Mubarak, Inas A. Ahmed, Abdullah E. Mousa, and Dina M. D. Bader. 2022. "Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis" Catalysts 12, no. 2: 163. https://doi.org/10.3390/catal12020163
APA StyleEl Shahawy, A., Ragab, A. H., Mubarak, M. F., Ahmed, I. A., Mousa, A. E., & Bader, D. M. D. (2022). Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts, 12(2), 163. https://doi.org/10.3390/catal12020163