Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of TiO2-SiO2 Nanocomposite
2.3. Material Characterization
2.4. Photocatalytic Reactions
3. Results and Discussion
3.1. Photocatalytic Activity Measurements
3.2. Effect of Initial pH
3.3. Effect of Initial Concentration
3.4. Effect of Dosage of UV-Treated TiO2-SiO2
3.5. Effect of Various Scavengers on MB Degradation
3.6. Spectral Changes during the Photocatalytic Chlorination of MB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mian, M.M.; Liu, G. Recent progress in biochar-supported photocatalysts: Synthesis, role of biochar, and applications. RSC Adv. 2018, 8, 14237–14248. [Google Scholar] [CrossRef] [Green Version]
- Bartolomeu, M.; Maria da Graça, P.M.S.; Faustino, M.A.; Almeida, A. Wastewater chemical contaminants: Remediation by Advanced Oxidation Processes. Photochem. Photobiol. Sci. 2018, 1711, 1573–1598. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, A.S.; Khanna, P.K. Titanium dioxide (TiO2)-decorated silver indium diselenide (AgInSe2): Novel nano-photocatalyst for oxidative dye degradation. Inorg. Chem. Front. 2018, 5, 2242–2256. [Google Scholar] [CrossRef]
- Peleyeju, M.G.; Arotiba, O.A. Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater. Environ. Sci. Water Res. Technol. 2018, 4, 1389–1411. [Google Scholar] [CrossRef]
- Sun, S.; Yu, X.; Yang, Q.; Liang, S.; Yang, Z. Mesocrystals for photocatalysis: A comprehensive review on synthetic engineering and functional modifications. Nanoscale Adv. 2019, 1, 34–63. [Google Scholar] [CrossRef]
- Joseph, C.G.; Li Puma, G.; Bono, A.; Taufiq-Yap, Y.H.; Krishnaiah, D. Sonolysis, photolysis, and sequential sonophotolysis for the degradation of 2, 4, 6-trichlorophenol: The effect of solution concentration. Chem. Eng. Commun. 2015, 202, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Joseph, C.G.; Taufiq-Yap, Y.H.; Krishnan, V.; Letshmanan, E. Remediation of anionic dye simulated wastewater using TiO2 as a photocatalyst under various light irradiation wavelength. Malays. J. Chem. 2016, 18, 27–36. [Google Scholar]
- Joseph, C.G.; Musta, B.; Sarjadi, M.S.; Koay, J.H.; Elilarasi, L. Effect of different UV and solar radiation wavelengths on the photocatalysis treatment of 2,4,6-trichlorophenol contaminated wastewater: Parametric and kinetic studies. Malays. J. Chem. 2019, 21, 1–12. [Google Scholar]
- De Souza, M.L.; dos Santos, D.P.; Corio, P. Localized surface plasmon resonance enhanced photocatalysis: An experimental and theoretical mechanistic investigation. RSC Adv. 2018, 8, 28753–28762. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jain, T.; Ishida, K.; Liu, H. A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse. Environ. Sci. Water Res. Technol. 2017, 3, 128–138. [Google Scholar] [CrossRef]
- Joseph, C.G.; Taufiq-Yap, Y.H.; Musta, B.; Sarjadi, M.S.; Elilarasi, L. Application of plasmonic metal nanoparticles in TiO2-SiO2 composite as an efficient solar-activated photocatalyst: A review paper. Front. Chem. 2021, 8, 568063. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Q.; Gao, N.Y.; Chu, W.H.; Yang, Q.L.; Yin, D.Q. Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. RSC Adv. 2017, 7, 33627–33634. [Google Scholar] [CrossRef] [Green Version]
- Fateh, R.; Dillert, R.; Bahnemann, D. Self-Cleaning properties, mechanical stability, and adhesion strength of transparent photocatalytic TiO2–ZnO coatings on polycarbonate. ACS Appl. Mater. Interfaces 2014, 6, 2270–2278. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, Z.; Liu, Y.; Fang, M. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays. Int. J. Photoenergy 2012, 2012, 832516–832523. [Google Scholar] [CrossRef] [Green Version]
- An, T.; Zhang, W.; Xiao, X.; Sheng, G.; Fu, J.; Zhu, X. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor. J. Photochem. Photobiol. A Chem. 2004, 161, 233–242. [Google Scholar] [CrossRef]
- Zhang, W.; An, T.; Cui, M.; Sheng, G.; Fu, J. Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor. J. Chem. Technol. Biotechnol. 2005, 80, 223–229. [Google Scholar] [CrossRef]
- Zanoni, M.V.B.; Sene, J.J.; Selcuk, H.; Anderson, M.A. Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes. Environ. Sci. Technol. 2004, 38, 3203–3208. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Torres, E. Comparison of adsorption of mercaptopropyl trimethoxy silane on amphiphilic TiO2 and hydroxylated SiO2. Langmuir 2010, 26, 15161–15168. [Google Scholar] [CrossRef] [PubMed]
- Houmard, M.; Berthomé, G.; Joud, J.C.; Langlet, M. Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol–gel route. Surf. Sci. 2011, 605, 456–462. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, D.P.; Wu, R.; Gazi, S.; Soo, H.S.; Sritharan, T.; Chen, Z. New insights into the photocatalytic activity of 3-D core–shell P25@ silica nanocomposites: Impact of mesoporous coating. Dalton Trans. 2017, 46, 4994–5002. [Google Scholar] [CrossRef]
- Jiang, Y.; Jin, Z.; Chen, C.; Duan, W.; Liu, B.; Chen, X.; Guo, J. Cerium-doped mesoporous-assembled SiO2/P25 nanocomposites with innovative visible-light sensitivity for the photocatalytic degradation of organic dyes. RSC Adv. 2017, 7, 12856–12870. [Google Scholar] [CrossRef] [Green Version]
- Yaparatne, S.; Tripp, C.P.; Amirbahman, A. Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts. J. Hazard. Mater. 2018, 346, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, N.; Singh, R.K.; Mishra, S.K.; Kannan, S. Quantitative studies on the size induced anatase to rutile phase transformation in TiO2–SiO2 binary oxides during heat treatments. RSC Adv. 2014, 4, 49752–49761. [Google Scholar] [CrossRef]
- Bo, Z.; Dong, R.; Jin, C.; Chen, Z. High photocatalytically active cocoons-like TiO2/SiO2 synthesized by hydrothermal process and subsequent calcination at 900 °C. Mater. Sci. Semicond. Processing 2017, 72, 9–14. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.S. Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chem. Eng. J. 2018, 337, 60–73. [Google Scholar] [CrossRef]
- Ren, C.; Qiu, W.; Zhang, H.; He, Z.; Chen, Y. Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light. J. Mol. Catal. A Chem. 2015, 398, 215–222. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.; Karaca, S.; Fathinia, M. Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: Parametric studies, mechanistic analysis and intermediates identification. RSC Adv. 2016, 6, 87569–87583. [Google Scholar] [CrossRef]
- Dong, P.; Yang, F.; Cheng, X.; Huang, Z.; Nie, X.; Xiao, Y.; Zhang, X. Plasmon enhanced photocatalytic and antimicrobial activities of Ag-TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Mater. Sci. Eng. C 2019, 96, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Saputera, W.H.; Tahini, H.A.; Sabsabi, M.; Tan, T.H.; Bedford, N.M.; Lovell, E.; Cui, Y.; Hart, J.N.; Friedmann, D.; Smith, S.C.; et al. Light-Induced Synergistic Multi defect Sites on TiO2/SiO2 Composites for Catalytic Dehydrogenation. ACS Catal. 2019, 9, 2674–2684. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mubarak, N.S.A.; Ishak, M.A.M.; Ismail, K.; Nawawi, W.I. Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film. J. Taibah Univ. Sci. 2016, 10, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Pawar, R.R.; Gupta, P.; Sawant, S.Y.; Shahmoradi, B.; Lee, S.-M. Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Int. J. Biol. Macromol. 2018, 114, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, J.; Duan, M.; Fang, S. Real-time measurement of the crystal violet adsorption behavior and interaction process at the silica–aqueous interface by near-field evanescent wave. Phys. Chem. Chem. Phys. 2018, 20, 19208–19220. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Zhang, J.; Zhou, J.; Lei, J. Study on adsorption of methylene blue by a novel composite material of TiO2 and alum sludge. RSC Adv. 2018, 8, 32799–32807. [Google Scholar] [CrossRef] [Green Version]
- Chaari, I.; Fakhfakh, E.; Medhioub, M.; Jamoussi, F. Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J. Mol. Struct. 2019, 1179, 672–677. [Google Scholar] [CrossRef]
- Yin, R.; Ling, L.; Shang, C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Res. 2018, 142, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Dodd, M.C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J. Environ. Monit. 2012, 14, 1754–1771. [Google Scholar] [CrossRef]
- Kwon, M.; Yoon, Y.; Kim, S.; Jung, Y.; Hwang, T.M.; Kang, J.W. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV. Sci. Total Environ. 2018, 637, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Wu, Z.; Ren, Z.; Guo, K.; Hou, S.; Hua, Z.; Li, X.; Fang, J. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes. Water Res. 2018, 137, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Nagarjuna, R.; Roy, S.; Ganesan, R. Polymerizable sol-gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue. Microporous Mesoporous Mater. 2015, 211, 1–8. [Google Scholar] [CrossRef]
- Abdellah, M.H.; Nosier, S.A.; El-Shazly, A.H.; Mubarak, A.A. Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alex. Eng. J. 2018, 57, 3727–3735. [Google Scholar] [CrossRef]
- Xu, C.; Rangaiah, G.P.; Zhao, X.S. Photocatalytic degradation of methhylene blue by titanium dioxide: Experimental and modeling study. Ind. Eng. Chem. Res. 2014, 53, 14641–14649. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, S.; Zhong, W.; Wei, W. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J. Mol. Liq. 2018, 268, 658–666. [Google Scholar] [CrossRef]
- Babu, S.G.; Karthik, P.; John, M.C.; Lakhera, S.K.; Ashokkumar, M.; Khim, J.; Neppolian, B. Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrason. Sonochem. 2019, 50, 218–223. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, N.P.; Silva, F.N.; da Silva, M.L.C.P.; Campos, T.M.B.; Thim, G.P.; Rodrigues, L.A. Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: Effect of catalyst dosage, dye concentration, and radiation source. Mater. Chem. Phys. 2018, 214, 95–106. [Google Scholar] [CrossRef]
- Huang, X.; Qu, Y.; Cid, C.A.; Finke, C.; Hoffmann, M.R.; Lim, K.; Jiang, S.C. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Res. 2016, 92, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamath, D.; Minakata, D. Emerging investigators series: Ultraviolet and Free Chlorine Aqueous-phase Advanced Oxidation Process: Kinetic Simulations and Experimental Validation. Environ. Sci. Water Res. Technol. 2018, 4, 1231–1238. [Google Scholar] [CrossRef]
- Zheng, F.; Zhu, Z. Flexible, Freestanding, and Functional SiO2 Nanofibrous Mat for Dye-Sensitized Solar Cell and Photocatalytic Dye Degradation. ACS Appl. Nano Mater. 2018, 1, 1141–1149. [Google Scholar] [CrossRef]
- Archana, J.; Harish, S.; Kavirajan, S.; Navaneethan, M.; Ponnusamy, S.; Shimomura, M.; Hayakawa, Y. Ultra-fast photocatalytic and dye-sensitized solar cell performances of mesoporous TiO2 nanospheres. Appl. Surf. Sci. 2018, 449, 729–735. [Google Scholar] [CrossRef]
- Dong, W.; Sun, Y.; Ma, Q.; Zhu, L.; Hua, W.; Lu, X.; Zhuang, G.; Zhang, S.; Guo, Z.; Zhao, D. Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2–SiO2 nanocomposites to various organic contaminants. J. Hazard. Mater. 2012, 229, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.L.; Na, C.; Zhang, H.P.; Chen, Z.D.; Jin, C.C. TiO2/SiO2 mesoporous microspheres with intelligently controlled texture. Mater. Des. 2016, 89, 830–838. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S. Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A Review. J. Environ. Chem. Eng. 2018, 6, 6088–6107. [Google Scholar] [CrossRef]
- Zhu, Z.; Cai, H.; Sun, D.W. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci. Technol. 2018, 75, 23–35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, C.G.; Taufiq-Yap, Y.H.; Letshmanan, E.; Vijayan, V. Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst. Catalysts 2022, 12, 156. https://doi.org/10.3390/catal12020156
Joseph CG, Taufiq-Yap YH, Letshmanan E, Vijayan V. Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst. Catalysts. 2022; 12(2):156. https://doi.org/10.3390/catal12020156
Chicago/Turabian StyleJoseph, Collin G., Yun Hin Taufiq-Yap, Elilarasi Letshmanan, and Veena Vijayan. 2022. "Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst" Catalysts 12, no. 2: 156. https://doi.org/10.3390/catal12020156
APA StyleJoseph, C. G., Taufiq-Yap, Y. H., Letshmanan, E., & Vijayan, V. (2022). Heterogeneous Photocatalytic Chlorination of Methylene Blue Using a Newly Synthesized TiO2-SiO2 Photocatalyst. Catalysts, 12(2), 156. https://doi.org/10.3390/catal12020156