Evaluation of Structural and Functional Properties of La0.6Sr0.4MnO3 Perovskite Prepared by the Fast Solution Combustion Approach
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitaro, M.; Tekelenburg, E.K.; Shao, S.; Loi, M.A. Tin halide perovskites: From fundamental properties to solar cells. Adv. Mater. 2022, 34, 2105844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, P.; Dai, S. Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catal. 2015, 5, 6370–6385. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Zhong, L.; Xiao, P.; Xu, X.; Yang, X.; Zhao, Z.; Li, J. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catal. 2014, 4, 2917–2940. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chem. Rev. 2014, 114, 10292–10368. [Google Scholar] [CrossRef]
- Hussain, S.; Yangping, L. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transit. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Shao, Z. Cation-Deficient Perovskites for Clean Energy Conversion. Accounts Mater. Res. 2021, 2, 477–488. [Google Scholar] [CrossRef]
- Athayde, D.D.; Souza, D.F.; Silva, A.M.; Vasconcelos, D.; Nunes, E.H.; da Costa, J.C.; Vasconcelos, W.L. Review of perovskite ceramic synthesis and membrane preparation methods. Ceram. Int. 2016, 42, 6555–6571. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, Z.; Cui, Y.; Chen, T.; Hu, J.; Kawi, S. Highly efficient NO decomposition via dual-functional catalytic perovskite hollow fiber membrane reactor coupled with partial oxidation of methane at medium-low temperature. Environ. Sci. Technol. 2019, 53, 9937–9946. [Google Scholar] [CrossRef]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.F.; Yang, M.Z.; Chen, B.X.; Wang, X.D.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Miller, K.A.; Zhu, H.; Egap, E. Lead Halide Perovskite Nanocrystals as Photocatalysts for PET-RAFT Polymerization under Visible and Near-Infrared Irradiation. ACS Macro Lett. 2020, 9, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Dai, J.; Zhou, W.; Shao, Z. Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. Energy Fuels 2020, 34, 10547–10567. [Google Scholar] [CrossRef]
- Yu, B.F.; Gao, Q.; Zhang, B.; Meng, X.Z.; Chen, Z. Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 2003, 26, 622–636. [Google Scholar] [CrossRef]
- Biswas, S.; Keshri, S.; Goswami, S.; Isaac, J.; Ganguly, S.; Perov, N. Antibiotic loading and release studies of LSMO nanoparticles embedded in an acrylic polymer. Phase Transit. 2016, 89, 1203–1212. [Google Scholar] [CrossRef]
- Žužić, A.; Ressler, A.; Macan, J. Perovskite oxides as active materials in novel alternatives to well-known technologies: A review. Ceram. Int. 2022, 48, 27240–27261. [Google Scholar] [CrossRef]
- Libby, W.F. Promising Catalyst for Auto Exhaust. Science 1971, 171, 499–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voorhoeve, R.J.H.; Remeika, J.P.; Trimble, L.E. Defect Chemistry and Catalysis in Oxidation and Reduction over Perovskite-Type Oxides. Ann. N. Y. Acad. Sci. 2006, 272, 3–21. [Google Scholar] [CrossRef]
- Hanif, M.B.; Rauf, S.; Motol, M.; Babar, Z.; Li, C.J.; Li, C.X. Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mat. Res. Bull. 2022, 146, 111612. [Google Scholar] [CrossRef]
- Yang, G.; Su, C.; Shi, H.; Zhu, Y.; Song, Y.; Zhou, W.; Shao, Z. Towards reducing operation temperature of solid oxide fuel cells: Our past fifteen years of efforts in cathode development. Energ. Fuel. 2020, 34, 15169–15194. [Google Scholar] [CrossRef]
- Park, B.-K.; Barnett, S.A. Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration. J. Mater. Chem. A. 2020, 8, 11626–11631. [Google Scholar] [CrossRef]
- Wang, W.; Mogensen, M. High-performance lanthanum-ferrite based cathode for SOFC. Solid State Ion. 2005, 176, 457–462. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, M.; Zhang, Y.; Liu, P.; Liu, Z.; Xie, Y.; Cai, W.; Yu, F.; Zhou, Q.; Wang, X.; et al. Electrochemical Oxidation of Carbon at High Temperature: Principles and Applications. Energy Fuels 2017, 32, 4107–4117. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Han, M. Densification of Ce0.9Gd0.1O2-δ interlayer to improve the stability of La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.9Gd0.1O2-δ interface and SOFC. J. Electroanal. Chem. 2020, 857, 113591–113598. [Google Scholar] [CrossRef]
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144. [Google Scholar] [CrossRef]
- Saha, S.; Ghanawat, S.J.; Purohit, R.D. Solution combustion synthesis of nano particle La0.9Sr0.1MnO3 powder by a unique oxidant-fuel combination and its characterization. J. Mater. Sci. 2006, 41, 1939–1943. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Lu, Q.; Sun, L.; Crumlin, E.J.; Yildiz, B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat. Mater. 2016, 15, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Tiefel, T.H.; McCormack, M.; Fastneach, R.A.; Ramesh, R.; Clien, L.H. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 1994, 264, 413. [Google Scholar] [CrossRef] [Green Version]
- Mahesh, R.; Mahendiran, R.; Raychaudhuri, A.K.; Rao, C.N.R. Effect of particle size on the giant magnetoresistance of La0.7Ca0.3MnO3. Appl. Phys. Lett. 1996, 68, 2291. [Google Scholar] [CrossRef]
- Huang, Y.H.; Xu, Z.G.; Yan, C.H.; Wang, Z.M.; Zhu, T.; Liao, C.S.; Gao, S.; Xu, G.X. Soft chemical synthesis and transport properties of La0.7Sr0.3MnO3 granular perovskites. Solid State Commun. 2000, 114, 43. [Google Scholar] [CrossRef]
- Zhang, N.; Ding, W.; Zhong, W.; Xing, D.; Du, Y. Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Phys. Rev. B 1997, B56, 8138. [Google Scholar] [CrossRef]
- Yokokawa, H.; Sakai, N.; Kawada, T.; Dokiwa, M. Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte. Solid State Ion. 1990, 40, 398. [Google Scholar] [CrossRef]
- Mangalaraja, R.; Mouzon, J.; Hedström, P.; Camurri, C.P.; Ananthakumar, S.; Odén, M. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics. Powder Technol. 2009, 191, 309–314. [Google Scholar] [CrossRef]
- Marinšek, M.; Zupan, K.; Maèek, J. Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources 2002, 106, 178–188. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Jung, S.; Vohs, J.M.; Gorte, R.J. A Comparison of LSM, LSF, and LSCo for Solid Oxide Electrolyzer Anodes. J. Electrochem. Soc. 2006, 153, A2066–A2070. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.M.; Chan, H.S.; Zhang, L.H.; Chew, C.H.; Loo, B.H. Preparation of fine LaNiO3 powder from oxalate precursors via reactions in inverse micro emulsions. Mater. Chem. Phys. 1994, 37, 263–268. [Google Scholar] [CrossRef]
- Di Florio, G.; Macchi, E.G.; Mongibello, L.; Baratto, M.C.; Basosi, R.; Busi, E.; Caliano, M.; Cigolotti, V.; Testi, M.; Trini, M. Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single family house nanogrid. Appl Energ. 2021, 285–304, 116378–116397. [Google Scholar] [CrossRef]
- Neagu, D.; Irvine, J.T. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells. Chem. Mater. 2010, 22, 5042–5053. [Google Scholar] [CrossRef]
- Raoufi, T.; Ehsani, M.; Khoshnoud, D.S. Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.6Sr0.4MnO3 ceramic: A comparison between sol-gel and solid state process. Ceram. Int. 2017, 43, 5204–5215. [Google Scholar] [CrossRef]
- Sanna, C.; Squizzato, E.; Costamagna, P.; Holtappels, P.; Glisenti, A. Electrochemical study of symmetrical intermediate temperature-solid oxide fuel cells based on La0.6Sr0.4MnO3/Ce0.9Gd0.1O1.95 for operation in direct methane/air. Electrochim. Acta 2022, 409, 139939. [Google Scholar] [CrossRef]
- Durango-Petro, J.; Salvo, C.; Usuba, J.; Abarzua, G.; Sanhueza, F.; Mangalaraja, R.V. Fast Solution Synthesis of NiO-Gd0.1Ce0.9O1.95 Nanocomposite via Different Approach: Influence of Processing Parameters and Characterizations. Materials 2021, 14, 3437. [Google Scholar] [CrossRef]
- Rendón, R.C.; Udayabhaskar, R.; Salvo, C.; Sepúlveda, E.; Rodríguez, J.J.; Camurri, C.P.; Viswanathan, M.R. Evaluation of La0.8Sr0.2MnO3 perovskite prepared by fast solution combustion. Ceram. Int. 2022, 48, 35100–35107. [Google Scholar] [CrossRef]
- Balzar, D.; Ledbetter, H. Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 1993, 26, 97–103. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Viret, M.; Von Molnár, S. Mixed-valence manganites. Adv. Phys. 1999, 48, 167–293. [Google Scholar] [CrossRef]
- Islam, M.A.; Rondinelli, J.M.; Spanier, J.E. Normal mode determination of perovskite crystal structures with octahedral rotations: Theory and applications. J. Phys. Condens. Matter 2013, 25, 175902. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.-H.; Liu, M.; Jaegermann, W. X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater. Lett. 2005, 59, 1980–1983. [Google Scholar] [CrossRef]
- Caillol, N.; Pijolat, M.; Siebert, E. Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Appl. Surf. Sci. 2007, 253, 4641–4648. [Google Scholar] [CrossRef]
- Jiang, S. The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment. Solid State Ionics 1999, 121, 1–10. [Google Scholar] [CrossRef]
- Squizzato, E.; Sanna, C.; Glisenti, A.; Costamagna, P. Structural and catalytic characterization of La0.6Sr0.4MnO3 nanofibers for application in direct methane intermediate temperature solid oxide fuel cell anodes. Energies 2021, 14, 3602. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749. [Google Scholar] [CrossRef]
- Arandiyan, H.; Dai, H.; Deng, J.; Liu, Y.; Bai, B.; Wang, Y.; Li, X.; Xie, S.; Li, J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. J. Catal. 2013, 307, 327–339. [Google Scholar] [CrossRef]
- Huang, F.; Sun, X.; Zheng, Y.; Xiao, Y.; Zheng, Y. Facile co precipitation synthesis of La0.6Sr0.4MnO3 perovskites with high surface area. Mater. Lett. 2018, 210, 287–290. [Google Scholar] [CrossRef]
- Saleem, M.; Varshney, D. Structural, thermal, and transport properties of La0.67Sr0.33MnO3 nanoparticles synthesized via the sol–gel auto-combustion technique. RSC Adv. 2018, 8, 1600–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinde, K.P.; Thorat, N.D.; Pawar, S.S.; Pawar, S.H. Combustion synthesis and characterization of perovskite La0.9Sr0.1MnO3. Mater. Chem. Phys. 2012, 134, 881–885. [Google Scholar] [CrossRef]
- Varshney, D.; Dodiya, N. Electrical resistivity of the hole doped La0.8Sr0.2MnO3 manganites: Role of electron–electron/phonon/magnon interactions. Mater. Chem. Phys. 2011, 129, 896–904. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, Y.J. Prediction of the Magneto-Resistance of La0.65Ca0.35MnO3 and La0.8Sr0.2MnO3 via Temperature and Magnetic Field. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013. [Google Scholar]
- Rashad, M.M.; Turky, A.O.; Kandil, A.T. Optical and electrical properties of Ba1−xSrxTiO3 nanopowders at different Sr2+ ion content. J. Mater. Sci. Mater. Electron. 2013, 24, 3284–3291. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Zaki, Z.I.; Ibrahim, I.A.; Bechelany, M. Tuning the optical and dielectric properties of calcium copper titanate CaxCu3−xTi4O12 nanopowders. RSC Adv. 2015, 5, 18767–18772. [Google Scholar] [CrossRef]
- Cui, K.; Cheng, Y.; Dai, J.; Liu, J. Synthesis, characterization and microwave absorption properties of La0.6Sr0.4MnO3/polyaniline composite. Mater. Chem. Phys. 2013, 138, 810–816. [Google Scholar] [CrossRef]
- Afje, F.R.; Ehsani, M. Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis. Mater. Res. Express 2018, 5, 045012. [Google Scholar] [CrossRef]
- Cesaria, M.; Caricato, A.P.; Leggieri, G.; Martino, M.; Maruccio, G. Optical response of oxygen deficient La0.7Sr0.3MnO3 thin films deposited by pulsed laser deposition. Thin Solid Film. 2013, 545, 592–600. [Google Scholar] [CrossRef]
- Busse, P.; Yin, Z.; Mierwaldt, D.; Scholz, J.; Kressdorf, B.; Glaser, L.; Miedema, P.S.; Rothkirch, A.; Viefhaus, J.; Jooss, C.; et al. Probing the surface of La0.6Sr0.4MnO3 in water vapor by in situ photon-in/photon-out spectroscopy. J. Phys. Chem. C 2020, 124, 7893–7902. [Google Scholar] [CrossRef]
- Liu, X.L.; Machida, A.M.; Moritomo, Y.M.; Ichida, M.I.; Nakamura, A.N. Room-temperature photo switching in La0.6Sr0.4MnO3 film. Jpn. J. Appl. Phys. 2000, 39, L670. [Google Scholar] [CrossRef]
- de Jong, M.P.; Dediu, V.A.; Taliani, C.; Salaneck, W.R. Electronic structure of La0.7Sr0.3MnO3 thin films for hybrid organic/inorganic spintronics applications. J. Appl. Phys. 2003, 94, 7292–7296. [Google Scholar] [CrossRef]
- Takenaka, K.; Sawaki, Y.; Shiozaki, R.; Sugai, S. Electronic structure of the double-exchange ferromagnet La0.825Sr0.175MnO3 studied by optical reflectivity. Phys. Rev. B 2000, 62, 13864. [Google Scholar] [CrossRef]
Samples | Phases | Weight % | Lattice Parameters (Ǻ) | O (18e)- Position (x) | Crystallite Size (nm) | R-Factors |
---|---|---|---|---|---|---|
LSM1400 | La0.6Sr0.4MnO3 S.G: R-3c | 96.29% | a = b = 5.487 (2) c = 13.352 (3) | 0.4516 (1) | >150 | Rexp = 5.51 Rwp =9.13 GoF = 1.66 |
S.G: Pm-3m | 3.71% | a = 3.873 (1) | >150 | |||
LSM1450 | La0.6Sr0.4MnO3 S.G: R-3c | 100% | a = b = 5.486 (2) c = 13.354 (3) | 0.4665 (1) | >150 | Rexp = 2.61 Rwp =4.41 GoF = 1.69 |
LSM1500 | La0.6Sr0.4MnO3 S.G: R-3c | 100% | a = b = 5.484 (2) c = 13.346 (3) | 0.4686 (1) | >150 | Rexp = 2.90 Rwp = 4.39 GoF = 1.51 |
Samples | Atom | La | Sr | Mn | O |
---|---|---|---|---|---|
Stoichiometric | 0.6 | 0.4 | 1 | 3 | |
LSM1400 | Wt. % (Expe.) Wt. % (Theo.) Difference (%) | 38.59 37.66 2.47 | 15.04 15.84 5.05 | 24.86 24.82 0.16 | 21.51 21.68 0.78 |
LSM1450 | Wt. % (Expe.) Wt. % (Theo.) Difference (%) | 35.45 37.66 5.87 | 15.05 15.84 4.99 | 24.17 24.82 2.62 | 25.33 21.68 16.84 |
LSM1500 | Wt. % (Expe.) Wt. % (Theo.) Difference (%) | 38.33 37.66 1.78 | 15.44 15.84 2.53 | 24.34 24.82 1.93 | 21.89 21.68 0.97 |
Sample | LSM1400 | LSM1450 | LSM1500 |
---|---|---|---|
Hardness (GPa) | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 |
Bulk density (g/cm3) | 6.20 | 4.58 | 4.75 |
Apparent porosity (%) | 3.9 | 21.9 | 10.3 |
Average grain size (nm) | 528 | 696 | 1010 |
Precursors | Grams (g) |
---|---|
La(NO3)3.6H2O | 2.992 |
Sr(NO3)2 | 0.366 |
Mn(NO3)2.4H2O | 2.168 |
C6H8O7 | 2.212 |
Temperature (°C) | Time (min/h) | Code Name |
---|---|---|
500 | 5 min | LSM500 |
1400 | 8 h | LSM1400 |
1450 | 8 h | LSM1450 |
1500 | 8 h | LSM1500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendón, R.C.; Salvo, C.; Sepúlveda, E.; Arulraj, A.; Sanhueza, F.; Rodríguez, J.J.; Mangalaraja, R.V. Evaluation of Structural and Functional Properties of La0.6Sr0.4MnO3 Perovskite Prepared by the Fast Solution Combustion Approach. Catalysts 2022, 12, 1636. https://doi.org/10.3390/catal12121636
Rendón RC, Salvo C, Sepúlveda E, Arulraj A, Sanhueza F, Rodríguez JJ, Mangalaraja RV. Evaluation of Structural and Functional Properties of La0.6Sr0.4MnO3 Perovskite Prepared by the Fast Solution Combustion Approach. Catalysts. 2022; 12(12):1636. https://doi.org/10.3390/catal12121636
Chicago/Turabian StyleRendón, Ramón Cobo, Christopher Salvo, Erwin Sepúlveda, Arunachalam Arulraj, Felipe Sanhueza, José Jiménez Rodríguez, and Ramalinga Viswanathan Mangalaraja. 2022. "Evaluation of Structural and Functional Properties of La0.6Sr0.4MnO3 Perovskite Prepared by the Fast Solution Combustion Approach" Catalysts 12, no. 12: 1636. https://doi.org/10.3390/catal12121636
APA StyleRendón, R. C., Salvo, C., Sepúlveda, E., Arulraj, A., Sanhueza, F., Rodríguez, J. J., & Mangalaraja, R. V. (2022). Evaluation of Structural and Functional Properties of La0.6Sr0.4MnO3 Perovskite Prepared by the Fast Solution Combustion Approach. Catalysts, 12(12), 1636. https://doi.org/10.3390/catal12121636