Sensor Based on a Solid Oxide Electrolyte for Measuring the Water-Vapor and Hydrogen Content in Air
Abstract
:1. Introduction
Background of the Amperometric Sensor Operation
2. Results and Discussion
3. Experimental Procedure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cattral, R. Chemical Sensors; Oxford University Press: Oxford, UK, 1997; p. 144. [Google Scholar]
- Takeuchi, T. Oxygen sensors. Sens. Actuators 1988, 14, 109–124. [Google Scholar] [CrossRef]
- Coppel, W.; Reinhardt, G.; Rosch, M. Trends in development of solid state amperometric and potentiometric high temperature sensors. Solid State Ion. 2000, 136–137, 519–531. [Google Scholar]
- Pasierb, P.; Rekas, M. Solid-state potentiometric gas sensors—Current status and future trends. J. Solid State Electrochem. 2009, 13, 3–25. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Dutta, P.; Akbar, S. Oxygen sensors: Materials, methods, designs and applications. J. Mater. Sci. 2003, 38, 4271–4282. [Google Scholar] [CrossRef]
- Vogel, A.; Baier, G.; Schiile, V. Non-Nernstian potentiometric zirconia sensors: Screening of potential working electrode materials. Sens. Actuators B 1993, 15, 147–150. [Google Scholar] [CrossRef]
- Kalyakin, A.; Gorbova, E.; Volkov, A.; Demin, A.; Tsiakaras, P. Combined amperometric-potentiometric oxygen sensor. Sens. Actuators B Chem. Vol. 2020, 313, 127999. [Google Scholar] [CrossRef]
- Saji, K. Characteristics of Limiting Current-Type Oxygen Sensor. J. Electrochem. Soc. 1987, 134, 2430–2435. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Yu, J.; Gao, X.; Jin, H.; Wang, X.; Wang, C. A limiting current oxygen sensor with La0.8Sr0.2(Ga0.8Mg0.2)1-xFexO3-δ dense diffusion barrier. J. Solid State Electrochem. 2017, 21, 1323–1328. [Google Scholar] [CrossRef]
- Gorbova, E.; Tzorbatzoglou, F.; Molochas, C.; Chloros, D.; Demin, A.; Tsiakaras, P. Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection. Catalysts 2021, 12, 1. [Google Scholar] [CrossRef]
- Usui, T.; Kurumiya, Y.; Ishibashi, K.; Nakasawa, M. Gas Polarographic Humidity Sensor Usable above 100C. Jpn. J. Appl. Phys. 1989, 28, 2325–2326. [Google Scholar] [CrossRef]
- Yagi, H.; Ichikawa, K. Humidity sensing characteristics of a limiting current type planar oxygen sensor for high temperatures. Sens. Actuators B 1993, 13–14, 92–95. [Google Scholar] [CrossRef]
- Kalyakin, A.; Lyagaeva, J.; Chuikin, A.; Volkov, A.; Medvedev, D. A high-temperature electrochemical sensor based on CaZr0.95Sc0.05O3–δ for humidity analysis in oxidation atmospheres. J. Solid State Electrochem. 2019, 23, 73–79. [Google Scholar] [CrossRef]
- Kalyakin, A.S.; Volkov, A.N.; Gorshkov, M.Y. An electrochemical sensor based on zirconia and calcium zirconate electrolytes for the inert gas humidity analysis. J. Taiwan Inst. Chem. Eng. 2020, 111, 222–227. [Google Scholar] [CrossRef]
- Volkov, A.; Gorbova, E.; Vylkov, A.; Medvedev, D.; Demin, A.; Tsiakaras, P. Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review. Sens. Actuators B 2017, 244, 1004–1015. [Google Scholar] [CrossRef]
- Taniguchi, N.; Kuroha, T.; Nishimura, C.; Iijima, K. Characteristics of novel BaZr0.4Ce0.4In0.2O3 proton conducting ceramics and their application to hydrogen sensors. Solid State Ion. 2005, 176, 2979–2983. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Park, J.; Kim, J.; Choi, A.; Park, C. The study of the voltage drift in high-temperature proton conductor-based hydrogen sensors adopting the solid reference electrode. Sens. Actuators B 2009, 140, 273–277. [Google Scholar] [CrossRef]
- Medvedev, D.; Kalyakin, A.; Volkov, A.; Demin, A.; Tsiakaras, P. Electrochemical moisture analysis by combining oxygen- and proton-conducting ceramic electrolytes. Electrochem. Commun. 2017, 76, 55–58. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Hwang, B.-J.; Tzeng, I. Solid-state amperometric hydrogen sensor using Pt/C/nafion composite electrodes prepared by a hot-pressed method. J. Electrochem. Soc. 2002, 149, H173–H178. [Google Scholar] [CrossRef]
- Maffei, A.K.; Kuriakose, A. A solid-state potentiometric sensor for hydrogen detection in air. Sens. Actuators B Chem. 2004, 98, 73–76. [Google Scholar] [CrossRef]
- Tan, Y.; Tan, T.C. Characteristics and modeling of a solid-state hydrogen sensor. J. Electrochem. Soc. 1994, 141, 461–466. [Google Scholar] [CrossRef]
- Liu, T.; Jin, H.; Li, L.; Yu, J. A novel method for preparing dense diffusion barrier limiting current oxygen sensor. J. Am. Ceram. Soc. 2018, 101, 1537–1543. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Zhang, H.; Yu, J.; Jin, H.; Wang, X.; Wang, C.; Gao, X. Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-xCoxO3-δ dense diffusion barrier. Ionics 2018, 24, 827–832. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalyakin, A.; Demin, A.K.; Gorbova, E.; Volkov, A.; Tsiakaras, P.E. Sensor Based on a Solid Oxide Electrolyte for Measuring the Water-Vapor and Hydrogen Content in Air. Catalysts 2022, 12, 1558. https://doi.org/10.3390/catal12121558
Kalyakin A, Demin AK, Gorbova E, Volkov A, Tsiakaras PE. Sensor Based on a Solid Oxide Electrolyte for Measuring the Water-Vapor and Hydrogen Content in Air. Catalysts. 2022; 12(12):1558. https://doi.org/10.3390/catal12121558
Chicago/Turabian StyleKalyakin, Anatoly, Anatoly K. Demin, Elena Gorbova, Alexander Volkov, and Panagiotis E. Tsiakaras. 2022. "Sensor Based on a Solid Oxide Electrolyte for Measuring the Water-Vapor and Hydrogen Content in Air" Catalysts 12, no. 12: 1558. https://doi.org/10.3390/catal12121558
APA StyleKalyakin, A., Demin, A. K., Gorbova, E., Volkov, A., & Tsiakaras, P. E. (2022). Sensor Based on a Solid Oxide Electrolyte for Measuring the Water-Vapor and Hydrogen Content in Air. Catalysts, 12(12), 1558. https://doi.org/10.3390/catal12121558