Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Oxidation of DME
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleisch, T.; Basu, A.; Sills, R. Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond. J. Nat. Gas Sci. Eng. 2012, 9, 94–107. [Google Scholar] [CrossRef]
- Semelsberger, T.A.; Borup, R.L.; Greene, H.L. Dimethyl ether (DME) as an alternative fuel. J. Power Sources 2006, 156, 497–511. [Google Scholar] [CrossRef]
- Bo, Z.; Weibiao, F.; Jingsong, G. Study of fuel consumption when introducing DME or ethanol into diesel engine. Fuel 2006, 85, 778–782. [Google Scholar] [CrossRef]
- Galvita, V.; Semin, G.; Belyaev, V.; Yurieva, T.; Sobyanin, V. Production of hydrogen from dimethyl ether. Appl. Catal. A Gen. 2001, 216, 85–90. [Google Scholar] [CrossRef]
- Sobyanin, V.; Cavallaro, S.; Freni, S. Dimethyl ether steam reforming to feed molten carbonate fuel cells (MCFCs). Energy Fuels 2000, 14, 1139–1142. [Google Scholar] [CrossRef]
- Faungnawakij, K.; Eguchi, K. Dimethyl ether-reforming catalysts for hydrogen production. Catal. Surv. Asia 2011, 15, 12–24. [Google Scholar] [CrossRef]
- Faungnawakij, K.; Tanaka, Y.; Shimoda, N.; Fukunaga, T.; Kikuchi, R.; Eguchi, K. Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina. Appl. Catal. B Environ. 2007, 74, 144–151. [Google Scholar] [CrossRef]
- Takeishi, K.; Suzuki, H. Steam reforming of dimethyl ether. Appl. Catal. A Gen. 2004, 260, 111–117. [Google Scholar] [CrossRef]
- Semelsberger, T.A.; Borup, R.L. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis. J. Power Sources 2005, 152, 87–96. [Google Scholar] [CrossRef]
- Zhang, T.-Q.; Malik, F.R.; Jung, S.; Kim, Y.-B. Hydrogen production and temperature control for DME autothermal reforming process. Energy 2022, 239, 121980. [Google Scholar] [CrossRef]
- Faungnawakij, K.; Viriya-empikul, N.; Tanthapanichakoon, W. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether. Int. J. Hydrogen Energy 2011, 36, 5865–5874. [Google Scholar] [CrossRef]
- Pan, Y.-X.; Han, Y.; Liu, C.-J. Pathways for steam reforming of dimethyl ether under cold plasma conditions: A DFT study. Fuel 2007, 86, 2300–2307. [Google Scholar] [CrossRef]
- Zou, J.-J.; Zhang, Y.-P.; Liu, C.-J. Hydrogen production from dimethyl ether using corona discharge plasma. J. Power Sources 2007, 163, 653–657. [Google Scholar] [CrossRef]
- Faungnawakij, K.; Kikuchi, R.; Eguchi, K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. J. Power Sources 2007, 164, 73–79. [Google Scholar] [CrossRef]
- Lian, J.-H.; Tan, H.-Y.; Guo, C.-Q.; Wang, Z.-D.; Shi, Y.; Lu, Z.-X.; Shen, L.-S.; Yan, C.-F. A highly active and stable Pt modified molybdenum carbide catalyst for steam reforming of dimethyl ether and the reaction pathway. Int. J. Hydrogen Energy 2020, 45, 31523–31537. [Google Scholar] [CrossRef]
- Nilsson, M.; Jansson, K.; Jozsa, P.; Pettersson, L.J. Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming. Appl. Catal. B Environ. 2009, 86, 18–26. [Google Scholar] [CrossRef]
- Wang, S.; Ishihara, T.; Takita, Y. Partial oxidation of dimethyl ether over various supported metal catalysts. Appl. Catal. A Gen. 2002, 228, 167–176. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Fujimoto, K.; Asami, K. Hydrogen production by partial oxidation and reforming of DME. Appl. Catal. A Gen. 2005, 288, 169–174. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Z.; Xu, N. Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst. J. Nat. Gas Chem. 2008, 17, 75–80. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, C. DFT study on pathways of partial oxidation of DME under cold plasma conditions. Fuel Process. Technol. 2007, 88, 967–976. [Google Scholar] [CrossRef]
- Li, K.; Wang, H.; Wei, Y.; Yan, D. Partial oxidation of methane to syngas with air by lattice oxygen transfer over ZrO2-modified Ce-Fe mixed oxides. Chem. Eng. J. 2011, 173, 574–582. [Google Scholar] [CrossRef]
- Salazar-Villalpando, M.D.; Berry, D.A.; Cugini, A. Role of lattice oxygen in the partial oxidation of methane over Rh/zirconia-doped ceria. Isotopic studies. Int. J. Hydrogen Energy 2010, 35, 1998–2003. [Google Scholar] [CrossRef]
- Sun, C.; Li, H.; Chen, L. Nanostructured ceria-based materials: Synthesis, properties, and applications. Energy Environ. Sci. 2012, 5, 8475–8505. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Guo, Y.; Guo, Y.; Gong, X.; Lu, G. Polymer-templated synthesis of hollow Pd-CeO2 nanocomposite spheres and their catalytic activity and thermal stability. J. Mater. Chem. A 2015, 3, 23230–23239. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Yao, Y.; Yusu, W.; Yang, J.; Yuzhen, H. Study on denitration performance of MnO2@CeO2 core-shell catalyst supported on nickel foam. Appl. Phys. A 2022, 128, 1–8. [Google Scholar] [CrossRef]
- Badmaev, S.D.; Akhmetov, N.O.; Sobyanin, V.A. Partial oxidation of dimethyl ether by air into synthesis gas over Pt-and Rh/Ce0.75Zr0.25O2–δ catalysts. Int. J. Hydrogen Energy 2021, 46, 35877–35885. [Google Scholar] [CrossRef]
- Basina, G.; Polychronopoulou, K.; Zedan, A.F.; Dimos, K.; Katsiotis, M.S.; Fotopoulos, A.P.; Ismail, I.; Tzitzios, V. Ultrasmall metal-doped CeO2 nanoparticles for low-temperature CO oxidation. ACS Appl. Nano Mater. 2020, 3, 10805–10813. [Google Scholar] [CrossRef]
- Thammachart, M.; Meeyoo, V.; Risksomboon, T.; Osuwan, S. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation. Catal. Today 2001, 68, 53–61. [Google Scholar] [CrossRef]
- Shang, D.H.; Cai, W.; Zhao, W.; Bu, Y.F.; Zhong, Q. Catalytic oxidation of NO to NO2 over Co-Ce-Zr solid solutions: Enhanced performance of Ce-Zr solid solution by Co. Catal. Lett. 2014, 144, 538–544. [Google Scholar] [CrossRef]
- Bai, Y.X.; Wu, J.J.; Qiu, X.P.; Xi, J.Y.; Wang, J.S.; Li, J.F.; Zhu, W.T.; Chen, L.Q. Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1−xO2/C catalysts for ethanol electro-oxidation. Appl. Catal. B Environ. 2007, 73, 144–149. [Google Scholar] [CrossRef]
- Zeng, S.H.; Zhang, X.H.; Fu, X.J.; Zhang, L.; Su, H.Q.; Pan, H. Co/CexZr1−xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane. Appl. Catal. B Environ. 2013, 136, 308–316. [Google Scholar] [CrossRef]
- Chen, A.; Zhou, Y.; Ta, N.; Li, Y.; Shen, W. Redox properties and catalytic performance of ceria-zirconia nanorods. Catal. Sci. Technol. 2015, 5, 4184–4192. [Google Scholar] [CrossRef]
- Ocampo, F.; Louis, B.; Kiwi-Minsker, L.; Roger, A. Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl. Catal. A Gen. 2011, 392, 36–44. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, X.; Ma, Z.Y.; Luo, W.; Deng, Y. Large-pore mesoporous CeO2-ZrO2 solid solutions with in-pore confined Pt nanoparticles for enhanced CO oxidation. Small 2019, 15, 1903058. [Google Scholar] [CrossRef]
- Noronha, F.B.; Fendley, E.C.; Soares, R.R.; Alvarez, W.E.; Resasco, D.E. Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1−xO2 catalysts. Chem. Eng. J. 2001, 82, 21–31. [Google Scholar] [CrossRef]
- Cai, W.; Zhong, Q.; Zhao, W.; Bu, Y. Focus on the modified CexZr1−xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO. Appl. Catal. B Environ. 2014, 158, 258–268. [Google Scholar] [CrossRef]
- Nelson, A.E.; Schulz, K.H. Surface chemistry and microstructural analysis of CexZr1−xO2−y model catalyst surfaces. Appl. Surf. Sci. 2003, 210, 206–221. [Google Scholar] [CrossRef]
- Lan, L.; Chen, S.; Cao, Y.; Zhao, M.; Gong, M.; Chen, Y. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. J. Colloid Interface Sci. 2015, 450, 404–416. [Google Scholar] [CrossRef]
- Laguna, O.H.; Pérez, A.; Centeno, M.A.; Odriozola, J.A. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Appl. Catal. B Environ. 2015, 176–177, 385–395. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Y.; Zhu, J.; Yu, R. Oxygen adatoms and vacancies on the (110) surface of CeO2. Sci. China Technol. Sci. 2018, 61, 135–139. [Google Scholar] [CrossRef]
- Li, S.; Hao, Q.; Zhao, R.; Liu, D.; Duan, H.; Dou, B. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chem. Eng. J. 2016, 285, 536–543. [Google Scholar] [CrossRef]
- Wu, X.; Xu, L.; Weng, D. The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl. Surf. Sci. 2004, 221, 375–383. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, Z.; Quan, X.; Wang, H. Selective catalytic oxidation of ammonia to nitrogen over ceria-zirconia mixed oxides. Appl. Catal. A Gen. 2012, 411, 131–138. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Z.; Liu, B.; Dong, L. Correlation of structural characteristics with catalytic performance of CuO/CexZr1−xO2 catalysts for NO reduction by CO. J. Catal. 2010, 275, 45–60. [Google Scholar] [CrossRef]
- Jampaiah, D.; Ippolito, S.J.; Sabri, Y.M.; Tardio, J.; Selvakannan, P.; Nafady, A.; Reddy, B.M.; Bhargava, S.K. Ceria-zirconia modified MnOx catalysts for gaseous elemental mercury oxidation and adsorption. Catal. Sci. Technol. 2016, 6, 1792–1803. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Xiao, P.; Zhu, J.; Liu, X. Cooperative effect between copper species and oxygen vacancy in Ce0. 7−xZrxCu0. 3O2 catalysts for carbon monoxide oxidation. Front. Chem. Sci. Eng. 2021, 15, 1524–1536. [Google Scholar] [CrossRef]
- Liu, B.; Li, C.; Zhang, G.; Yao, X.; Chuang, S.S.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446–10456. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; He, H.; Wu, Z.; Wu, J.; Chen, L.; Ye, D.; Fu, M. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl. Catal. B Environ. 2018, 223, 91–102. [Google Scholar] [CrossRef]
- Wang, L.; Meng, F. Oxygen vacancy and Ce3+ ion dependent magnetism of monocrystal CeO2 nanopoles synthesized by a facile hydrothermal method. Mater. Res. Bull. 2013, 48, 3492–3498. [Google Scholar] [CrossRef]
- López, J.M.; Gilbank, A.L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl. Catal. B Environ. 2015, 174, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, Y.; Xue, M.; Li, J. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, Z.; Shan, W.; Shen, W.; Wang, J. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments. J. Catal. 2005, 233, 41–50. [Google Scholar] [CrossRef]
- Kang, R.; Wei, X.; Bin, F.; Wang, Z.; Hao, Q.; Dou, B. Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0. 75Zr0. 25O2-δ catalyst. Appl. Catal. A Gen. 2018, 565, 46–58. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) |
---|---|
ZrO2 | 38.5 |
Ce0.2Zr0.8O2 | 36.9 |
Ce0.4Zr0.6O2 | 53.5 |
Ce0.6Zr0.4O2 | 50.2 |
Ce0.8Zr0.2O2 | 46.2 |
CeO2 | 45.8 |
Catalyst | n(Ce3+)/n(Ce3+ + Ce4+) | n(Oads)/n(Oads + Olat) |
---|---|---|
Ce0.2Zr0.8O2 | 32.41% | 29.84% |
Ce0.4Zr0.6O2 | 25.48% | 30.64% |
Ce0.6Zr0.4O2 | 21.30% | 28.97% |
Ce0.8Zr0.2O2 | 16.98% | 26.31% |
CeO2 | 12.82% | 24.30% |
x | n(Oads)/n(Oads + Olat) | DME Conversion | CO/(CO + CO2) |
---|---|---|---|
0.2 | 29.84% | 29.43% | 82.4% |
0.4 | 30.64% | 39% | 61.8% |
0.6 | 28.97% | 33.03% | 65.3% |
0.8 | 26.31% | 23.48% | 75.1% |
1 | 24.3% | 20.32% | 79.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Qi, P.; Liu, H.; Zhang, Q.; Zhao, Y.; Feng, X. Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether. Catalysts 2022, 12, 1536. https://doi.org/10.3390/catal12121536
Fu Z, Qi P, Liu H, Zhang Q, Zhao Y, Feng X. Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether. Catalysts. 2022; 12(12):1536. https://doi.org/10.3390/catal12121536
Chicago/Turabian StyleFu, Zhu, Ping Qi, Huimin Liu, Qijian Zhang, Yonghua Zhao, and Xiaoqian Feng. 2022. "Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether" Catalysts 12, no. 12: 1536. https://doi.org/10.3390/catal12121536
APA StyleFu, Z., Qi, P., Liu, H., Zhang, Q., Zhao, Y., & Feng, X. (2022). Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether. Catalysts, 12(12), 1536. https://doi.org/10.3390/catal12121536