Treatment of Oil Sands’ Mature Fine Tailings Using Advanced Wet Air Oxidation (WAO) and Wet Air Peroxide Oxidation (WAPO)
Abstract
:1. Introduction
2. Results
2.1. Effect of Temperature, Pressure, and Oxidant
2.2. Bitumen Recovery
2.3. Water Chemistry
2.4. Particle Characterization
2.5. Consolidated Particle Surface
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Experimental Method
4.3. Analytical Methods
5. Conclusions
- A temperature of 200 °C and internal pressure of 3.4 MPa can sufficiently break emulsions in MFT and separate bitumen, water, and particles using 0.7 MPa of air as the oxidant. This is in addition to the natural catalyst properties of clay minerals.
- The addition of hydrogen peroxide provides faster separation of particles and water, although most of the bitumen is degraded and dissolved in water due to fast oxidation reactions by access of hydroxyl radicals.
- Compared with 30 min, the 5 min oxidation time interval was found to be the optimum interval to recover froth. In addition, 5% (wt.) of the froth can be recovered by WAO in 210 min.
- DOC increases with the oxidation time interval due to the degradation of organics, while inorganic carbon is completely oxidized. More than 70% of the DOC in the recovered water is composed of low molecular weight carboxylic acids, which are environmentally safe and easily biodegradable. Faster release of dissolved anions and cations can be accomplished with the aid of hydrogen peroxide to reduce the process time.
- Consolidated particles show a reduced amount of bitumen, calcium, and sulfate ions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergero, C.; Binsted, M.; Younis, O.; Davies, E.G.R.; Siddiqui, M.S.; Xing, R.; Arbuckle, E.J.; Chiappori, D.V.; Fuhrman, J.; McJeon, H.; et al. Technology, Technology, Technology: An Integrated Assessment of Deep Decarbonization Pathways for the Canadian Oil Sands. Energy Strategy Rev. 2022, 41, 100804. [Google Scholar] [CrossRef]
- CAPP. Canada’s Oil Sands. Canada Oil and Natural Gas Production. 2022. Available online: https://www.capp.ca/economy/canadas-oil-and-natural-gas-production/ (accessed on 21 October 2022).
- Moradi, M.; You, Y.; Hung, H.; Li, J.; Park, R.; Alexandrou, N.; Moussa, S.G.; Jantunen, L.; Robitaille, R.; Staebler, R.M. Fugitive Emissions of Polycyclic Aromatic Compounds from an Oil Sands Tailings Pond Based on Fugacity and Inverse Dispersion Flux Calculations. Environ. Pollut. 2021, 269, 116115. [Google Scholar] [CrossRef]
- Srivastava, T.; Zhang, J.; Yu, B.; Junaid, A.; Sedgwick, A.; Fedosejevs, R.; Gupta, M.; Tsui, Y.Y. A Real Time in Situ Light-Scattering Technique for Tailings Solids Content Measurement: Near-Infrared versus Visible Wavelengths. Env. Technol. Innov. 2022, 28, 102876. [Google Scholar] [CrossRef]
- Jeeravipoolvarn, S.; Scott, J.D.; Chalaturnyk, R.J. 10 M Standpipe Tests on Oil Sands Tailings: Long-Term Experimental Results and Prediction. Can. Geotech. J. 2009, 46, 875–888. [Google Scholar] [CrossRef]
- Alizadeh, H.; MacIver, M.R.; Pawlik, M. Release of Bitumen from Mature Fine Tailings in the Presence of a Polymeric Dispersant. Can. J. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Giesy, J.P.; Anderson, J.C.; Wiseman, S.B. Alberta Oil Sands Development. Proc. Natl. Acad. Sci. USA 2010, 107, 951–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitby, C. Microbial Naphthenic Acid Degradation, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 70, ISBN 9780123809919. [Google Scholar]
- Zhu, Y.; Tan, X.; Liu, Q. Dual Polymer Flocculants for Mature Fine Tailings Dewatering. Can. J. Chem. Eng. 2017, 95, 3–10. [Google Scholar] [CrossRef]
- Hethnawi, A.; Karaki, T.; Zamani Keteklahijani, Y.; Chehelamirani, M.; Hassan, A.; Nassar, N.N. Enhanced Settling and Dewatering of Oil Sands Mature Fine Tailings with Titanomagnetite Nanoparticles Grafted with Polyacrylamide and Lauryl Sulfate. ACS Appl. Nano. Mater. 2022, 5, 7679–7695. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, X.; Li, H.; Chen, B.; Ye, S.; Zhang, N.; Yu, Z.; Zheng, J.; Chen, B. Enhancing Electronic Metal Support Interaction (EMSI) over Pt/TiO2 for Efficient Catalytic Wet Air Oxidation of Phenol in Wastewater. J. Hazard. Mater. 2022, 426, 128088. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Harbottle, D.; Alagha, L.; Xu, Z. Impact of Fugitive Bitumen on Polymer-Based Flocculation of Mature Fine Tailings. Can. J. Chem. Eng. 2013, 91, 1427–1432. [Google Scholar] [CrossRef]
- Siddique, T.; Kuznetsov, P.; Kuznetsova, A.; Arkell, N.; Young, R.; Li, C.; Guigard, S.; Underwood, E.; Foght, J.M. Microbially-Accelerated Consolidation of Oil Sands Tailings. Pathway I: Changes in Porewater Chemistry. Front. Microbiol. 2014, 5, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Zhu, X.; Butler, E.C. Comparison of Four Advanced Oxidation Processes for the Removal of Naphthenic Acids from Model Oil Sands Process Water. J. Hazard. Mater. 2011, 190, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Krishnapandi, A. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef] [PubMed]
- Sushma; Kumari, M.; Saroha, A.K. Performance of Various Catalysts on Treatment of Refractory Pollutants in Industrial Wastewater by Catalytic Wet Air Oxidation: A Review. J Env. Manag. 2018, 228, 169–188. [Google Scholar] [CrossRef]
- Luan, M.; Jing, G.; Piao, Y.; Liu, D.; Jin, L. Treatment of Refractory Organic Pollutants in Industrial Wastewater by Wet Air Oxidation. Arab. J. Chem. 2017, 10, S769–S776. [Google Scholar] [CrossRef] [Green Version]
- Luck, F. Wet Air Oxidation: Past, Present and Future. Catal Today 1999, 53, 81–91. [Google Scholar] [CrossRef]
- Hii, K.; Baroutian, S.; Parthasarathy, R.; Gapes, D.J.; Eshtiaghi, N. A Review of Wet Air Oxidation and Thermal Hydrolysis Technologies in Sludge Treatment. Bioresour. Technol. 2014, 155, 289–299. [Google Scholar] [CrossRef]
- Jing, G.; Luan, M.; Kong, L.; Han, C. Removing Organic Compounds from Oily Sludge. Energy Environ. 2012, 23, 771–779. [Google Scholar] [CrossRef]
- Jing, G.; Luan, M.; Du, W.; Han, C. Treatment of Oily Sludge by Advanced Oxidation Process. Env. Earth Sci 2012, 67, 2217–2221. [Google Scholar] [CrossRef]
- Jing, G.; Luan, M.; Chen, T.; Wang, H. Wet Air Oxidation of Oily Sludge. Int. J. Green Energy 2013, 10, 378–386. [Google Scholar] [CrossRef]
- Garg, A. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater. J. Inst. Eng. (India) Ser. A 2012, 93, 137–141. [Google Scholar] [CrossRef]
- Fu, J.; Kyzas, G.Z. Wet Air Oxidation for the Decolorization of Dye Wastewater: An Overview of the Last Two Decades. Chin. J. Catal. 2014, 35, 1–7. [Google Scholar] [CrossRef]
- Melero, J.A.; Martínez, F.; Botas, J.A.; Molina, R.; Pariente, M.I. Heterogeneous Catalytic Wet Peroxide Oxidation Systems for the Treatment of an Industrial Pharmaceutical Wastewater. Water Res. 2009, 43, 4010–4018. [Google Scholar] [CrossRef] [PubMed]
- Maduna, K.; Kumar, N.; Aho, A.; Wärnå, J.; Zrnčević, S.; Murzin, D.Y. Kinetics of Catalytic Wet Peroxide Oxidation of Phenolics in Olive Oil Mill Wastewaters over Copper Catalysts. ACS Omega 2018, 3, 7247–7260. [Google Scholar] [CrossRef] [Green Version]
- Pariente, M.I.; Melero, J.A.; Martínez, F.; Botas, J.A.; Gallego, A.I. Catalytic Wet Hydrogen Peroxide Oxidation of a Petrochemical Wastewater. Water Sci. Technol. 2010, 61, 1829–1836. [Google Scholar] [CrossRef]
- Bhargava, S.K.; Tardio, J.; Prasad, J.; Föger, K.; Akolekar, D.B.; Grocott, S.C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res. 2006, 45, 1221–1258. [Google Scholar] [CrossRef]
- Rueda-Márquez, J.J.; Levchuk, I.; Salcedo, I.; Acevedo-Merino, A.; Manzano, M.A. Post-Treatment of Refinery Wastewater Effluent Using a Combination of AOPs (H2O2photolysis and Catalytic Wet Peroxide Oxidation) for Possible Water Reuse. Comparison of Low and Medium Pressure Lamp Performance. Water Res. 2016, 91, 86–96. [Google Scholar] [CrossRef]
- Rodrigues, C.S.D.; Carabineiro, S.A.C.; Maldonado-Hódar, F.J.; Madeira, L.M. Wet Peroxide Oxidation of Dye-Containing Wastewaters Using Nanosized Au Supported on Al2O3. Catal Today 2017, 280, 165–175. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, B.; Zhong, Z.; Jiang, Y.; Zhou, R.; Liu, Z.; Hou, Z. Catalytic Wet Air Oxidation of Toxic Containments over Highly Dispersed Cu(II)/Cu(I)-N Species in the Framework of g-C3N4. J. Hazard. Mater. 2022, 424, 127679. [Google Scholar] [CrossRef]
- Kolaczkowski, S.T.; Beltran, F.J.; McLurgh, D.B.; Rivas, F.J. Wet Air Oxidation of Phenol: Factors That May Influence Global Kinetics. Process Saf. Environ. Prot. 1997, 75, 257–265. [Google Scholar] [CrossRef]
- Zhang, M. Role of Bitumen Viscosity in Bitumen Recovery from Athabasca Oil Sands. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2012. [Google Scholar]
- Adeyinka, O.B.; Samiei, S.; Xu, Z.; Masliyah, J.H. Effect of Particle Size on the Rheology of Athabasca Clay Suspensions. Can. J. Chem. Eng. 2009, 87, 422–434. [Google Scholar] [CrossRef]
- Mantzavinos, D.; Livingston, A.G.; Hellenbrand, R.; Metcalfe, I.S. Wet Air Oxidation of Polyethylene Glycols; Mechanisms, Intermediates and Implications for Integrated Chemical-Biological Wastewater Treatment. Chem. Eng. Sci. 1996, 51, 4219–4235. [Google Scholar] [CrossRef]
- Mantzavinos, D.; Lauer, E.; Hellenbrand, R.; Livingston, A.G.; Metcalfe, I.S. Wet Oxidation as a Pretreatment Method for Wastewaters Contaminated by Bioresistant Organics. Water Sci. Technol. 1997, 36, 109–116. [Google Scholar] [CrossRef]
- Mishra, V.S.; Mahajani, V.V.; Joshi, J.B. Wet Air Oxidation. Ind. Eng. Chem. Res. 1995, 34, 2–48. [Google Scholar] [CrossRef]
- Randall, T.L.; Knopp, P. v Detoxification of Specific Organic Substances by Wet Oxidation. J. Water Pollut. Control Fed. 1980, 52, 2117–2130. [Google Scholar]
- Genç, N.; Yonselems, A.; Daaşan, L.; Onar, A.N. Wet Oxidation: A Pre-Treatment Procedure for Sludge. Waste Manag. 2002, 22, 611–616. [Google Scholar] [CrossRef]
- Khan, Y.; Anderson, G.K.; Elliott, D.J. Wet Oxidation of Activated Sludge. Water Res. 1999, 33, 1681–1687. [Google Scholar] [CrossRef]
- Rivas, F.J.; Kolaczkowski, R.S.T.; Beltra’ns, F.J.B.; Mclurgh, D.B. Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism. Chem. Eng. Sci. 1998, 53, 2575–2586. [Google Scholar] [CrossRef]
- Xu, M.; Yan, S.; Sun, S.; Ni, Z.; Wu, W.; Sun, J. N,N-diethyl-m-toluamide (DEET) degradation by •OH and SO4•−-assisted AOPs in wastewater treatment: Theoretical studies into mechanisms, kinetics and toxicity. J. Environ. Chem. Eng. 2022, 10, 108435. [Google Scholar] [CrossRef]
- Mak, F.T.; Sarita, T.; Zele, I.R.; Cooper, W.J.; Kurucz, C.N.; Waite, T.D.; Nickelsen, M.G. Kinetic Modeling of Carbon Tetrachloride, Chloroform and Methylene Chloride Removal from Aqueous Solution Using the Electron Beam Process. Water Res. 1997, 31, 219–228. [Google Scholar] [CrossRef]
- Shende, R.V.; Mahajani, V.V. Kinetics of Wet Air Oxidation of Glyoxalic Acid and Oxalic Acid. Ind. Eng. Chem. Res. 1994, 33, 3125–3130. [Google Scholar] [CrossRef]
- Barlindhaug, J.; Ødegaard, H. Thermal Hydrolysate as a Carbon Source for Denitrification. Water Sci. Technol. 1996, 33, 99–108. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A Review of Thermal Sludge Pre-Treatment Processes to Improve Dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Lee, M.; Ahn, J.; Bae, W.; Lee, Y.W.; Shim, H. Effects of Operational Conditions on Sludge Degradation and Organic Acids Formation in Low-Critical Wet Air Oxidation. J. Hazard. Mater. 2009, 162, 10–16. [Google Scholar] [CrossRef]
- Debellefontaine, H.; Chakchouk, M.; Foussard, J.N.; Tissot, D.; Striolo, P. Treatment of Organic Aqueous Wastes: Wet Air Oxidation and Wet Peroxide Oxidation®. Environ. Pollut. 1996, 92, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, R.G.W.; Gallo, T.; Robey, H. Wet Air Oxidation for Hazardous Waste Control. J. Hazard. Mater. 1983, 8, 1–9. [Google Scholar] [CrossRef]
- Fontanier, V.; Zalouk, S.; Barbati, S. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts. J. Environ. Sci. 2011, 23, 520–528. [Google Scholar] [CrossRef]
- Darcovich, K.; Kotlyar, L.S.; Tse, W.C.; Ripmeester, J.A.; Capes, C.E.; Sparks, B.D. Wettability Study of Organic-Rich Solids Separated from Athabasca Oil Sands? Energy Fuels 1989, 3, 386–391. [Google Scholar] [CrossRef]
- Majid, A.; Sparks, B.D.; Ripmeester, J.A. Characterization of Solvent-Insoluble Organic Matter Isolated from Alberta Oil Sands. Fuel 1991, 70, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.A.; Pasternack, D.S. Hot Water Separation of Bitumen from Alberta Bituminous Sand. Ind. Eng. Chem. 1932, 24, 1410–1416. [Google Scholar] [CrossRef]
- Allen, E.W. Process Water Treatment in Canada’s Oil Sands Industry: I. Target Pollutants and Treatment Objectives. J. Environ. Eng. Sci. 2008, 7, 123–138. [Google Scholar] [CrossRef]
- Mahdavi, H.; Ulrich, A.C.; Liu, Y. Metal Removal from Oil Sands Tailings Pond Water by Indigenous Micro-Alga. Chemosphere 2012, 89, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Jia, B. Distribution of Oil Sands Formation Water in Bitumen Froth. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2010. [Google Scholar]
- Majid, A.; Ripmeester, J.A. Isolation and Characterization of Humic Acids from Alberta Oil Sands and Related Materials. Fuel 1990, 69, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Majid, A.; Sparks, B.D.; Ripmeester, J.A. Characterization of Insoluble Organic Matter Associated with Non-Settling Clay Minerals from Syncrude Sludge Pond Tailings. Fuel 1990, 69, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Farkish, A.; Fall, M. Rapid Dewatering of Oil Sand Mature Fine Tailings Using Super Absorbent Polymer (SAP). Min. Eng. 2013, 50–51, 38–47. [Google Scholar] [CrossRef]
- Proskin, S.; Sego, D.; Alostaz, M. Freeze-Thaw and Consolidation Tests on Suncor Mature Fine Tailings (MFT). Cold Reg. Sci. Technol. 2010, 63, 110–120. [Google Scholar] [CrossRef]
Interval Time (min) | Cycle Time (min) | Batch Cycles | ||||||
---|---|---|---|---|---|---|---|---|
5 | 5 | I | ||||||
10 | I | II | ||||||
15 | I | II | III | |||||
15 | 15 | I | ||||||
30 | I | II | ||||||
45 | I | II | III | |||||
30 | 30 | I | ||||||
60 | I | II | ||||||
90 | I | II | III | |||||
30 | 30 | I | ||||||
60 | I | II | ||||||
90 | I | II | III | |||||
120 | I | II | III | IV | ||||
150 | I | II | III | IV | V | |||
180 | I | II | III | IV | V | VI | ||
210 | I | II | III | IV | V | VI | VII |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Elnakar, H. Treatment of Oil Sands’ Mature Fine Tailings Using Advanced Wet Air Oxidation (WAO) and Wet Air Peroxide Oxidation (WAPO). Catalysts 2022, 12, 1518. https://doi.org/10.3390/catal12121518
Khan MF, Elnakar H. Treatment of Oil Sands’ Mature Fine Tailings Using Advanced Wet Air Oxidation (WAO) and Wet Air Peroxide Oxidation (WAPO). Catalysts. 2022; 12(12):1518. https://doi.org/10.3390/catal12121518
Chicago/Turabian StyleKhan, Muhammad Faizan, and Haitham Elnakar. 2022. "Treatment of Oil Sands’ Mature Fine Tailings Using Advanced Wet Air Oxidation (WAO) and Wet Air Peroxide Oxidation (WAPO)" Catalysts 12, no. 12: 1518. https://doi.org/10.3390/catal12121518
APA StyleKhan, M. F., & Elnakar, H. (2022). Treatment of Oil Sands’ Mature Fine Tailings Using Advanced Wet Air Oxidation (WAO) and Wet Air Peroxide Oxidation (WAPO). Catalysts, 12(12), 1518. https://doi.org/10.3390/catal12121518