Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting
Abstract
1. Introduction
2. Results and Discussion
2.1. Surface Morphologies and Structures
2.2. Electrocatalytic Performance toward HER
2.3. Electrocatalytic Performance toward OER
3. Experimental
3.1. Materials
3.2. Synthesis of α-NiMoO4 NWs/CC
3.3. Synthesis of Co(OH)2/α-NiMoO4 NWs/CC
3.4. Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From Electrode to Green Energy System. Nanomicro Lett. 2020, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chi, J.; Dong, B.; Sun, Y. Recent Progress in Decoupled H2 and O2 Production from Electrolytic Water Splitting. ChemElectroChem 2019, 6, 2157–2166. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, L.; Wang, J.; Cao, Y.; Tu, J.; Zhang, X.; Ding, L. Recent progress in CoP-based materials for electrochemical water splitting. Int. J. Hydrogen Energy 2021, 46, 34194–34215. [Google Scholar] [CrossRef]
- Zhou, D.; Li, P.; Xu, W.; Jawaid, S.; Mohammed-Ibrahim, J.; Liu, W.; Kuang, Y.; Sun, X. Recent Advances in Non--Precious Metal--Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat 2020, 6, 336–355. [Google Scholar] [CrossRef]
- You, B.; Tang, M.T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X.; Li, H. Enhancing Electrocatalytic Water Splitting by Strain Engineering. Adv. Mater. 2019, 31, 1807001. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xia, B.Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603. [Google Scholar] [CrossRef]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef]
- Lv, X.; Wei, W.; Wang, H.; Huang, B.; Dai, Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: A computational study. Appl. Catal. B-Environ. 2019, 255, 117743. [Google Scholar] [CrossRef]
- Lai, W.; Zhang, L.; Hua, W.; Indris, S.; Yan, Z.; Hu, Z.; Zhang, B.; Liu, Y.; Wang, L.; Liu, M.; et al. General pi-Electron-Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single-Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angew. Chem.-Int. Ed. 2019, 58, 11868–11873. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef]
- Zhang, L.; Jang, H.; Liu, H.; Kim, M.G.; Yang, D.; Liu, S.; Liu, X.; Cho, J. Sodium-Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst. Angew. Chem.-Int. Ed. 2021, 60, 18821–18829. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Kim, T.; Lee, J.; Choi, S.-I.; Lee, K. Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Adv. Mater. 2019, 31, 1806682. [Google Scholar] [CrossRef] [PubMed]
- Dionigi, F.; Zhu, J.; Zeng, Z.; Merzdorf, T.; Sarodnik, H.; Gliech, M.; Pan, L.; Li, W.; Greeley, J.; Strasser, P. Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides. Angew. Chem. Int. Ed. Engl. 2021, 60, 14446–14457. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Han, Q.; Fan, L.; Wan, H. Recent Development of Metal Alloy Nanostructures for Electrochemical Hydrogen Generation. Int. J. Electrochem. Sci. 2019, 14, 11549–11559. [Google Scholar] [CrossRef]
- Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X. First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small 2017, 13, 1701931. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Yang, Y.; Sirisomboonchai, S.; Wang, P.; Ma, X.; Abudula, A.; Guan, G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. J. Alloys Compd. 2020, 819, 153346. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Jiao, L. Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, S.-Z. Hierarchically Porous Nitrogen-Doped Graphene-NiCo2O4 Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano 2013, 7, 10190–10196. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Li, Y.; Lu, X.; Zhao, C. Bifunctional Porous NiFe/NiCo2O4/Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Adv. Funct. Mater. 2016, 26, 3515–3523. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, Z.; Lin, Y.; Wang, J.; Pan, H.; Xu, Z. Hierarchical heterostructure NiCo2O4@CoMoO4/NF as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 16950–16958. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Liang, C.; Chang, L.; Du, Y.; Han, X.; Sun, J.; Xu, P. Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting. Chem. Eng. J. 2022, 446, 137094. [Google Scholar] [CrossRef]
- An, L.; Feng, J.; Zhang, Y.; Wang, R.; Liu, H.; Wang, G.; Cheng, F.; Xi, P. Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting. Adv. Funct. Mater. 2019, 29, 1805298. [Google Scholar] [CrossRef]
- Choi, J.; Kim, D.; Zheng, W.; Yan, B.; Li, Y.; Lee, L.Y.S.; Piao, Y. Interface engineered NiFe2O4-x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Appl. Catal. B-Environ. 2021, 286, 119857. [Google Scholar] [CrossRef]
- Kim, T.-G.; Samuel, E.; Park, C.-W.; Joshi, B.; Kim, M.-W.; Swihart, M.; Yoon, S. Supersonically sprayed Zn2SnO4/SnO2/carbon nanotube films for high-efficiency water splitting photoanodes. J. Alloys Compd. 2020, 828, 154374. [Google Scholar] [CrossRef]
- Zhou, M.; Zeng, Y.; Liu, Y.; Sun, Y.; Lu, F.; Zhang, X.; Cao, R.; Xue, Y.; Zeng, X.; Wu, Y. Ni-Mo based metal/oxide heterostructured nanosheets with largely exposed interfacial atoms for overall water-splitting. Appl. Surf. Sci. 2022, 597, 153597. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, E.; Sun, G. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chin. J. Catal. 2020, 41, 574–591. [Google Scholar] [CrossRef]
- Yoon, T.; Kim, K.S. One-Step Synthesis of CoS-Doped beta-Co(OH)2@Amorphous MoS2+x Hybrid Catalyst Grown on Nickel Foam for High-Performance Electrochemical Overall Water Splitting. Adv. Funct. Mater. 2016, 26, 7386–7393. [Google Scholar] [CrossRef]
- Sapountzi, F.M.; Gracia, J.M.; Weststrate, C.J.; Fredriksson, H.O.A.; Niemantsverdriet, J.W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci. 2017, 58, 1–35. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Guo, P.; Fei, B.; Wu, R. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B-Environ. 2020, 261, 118240. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Zhao, Y.; Xu, H.; Zhao, J. Bifunctional Cu2Se-Co(OH)2 nanotube array/Cu foam electrocatalyst for overall water splitting. Electrochim. Acta 2019, 316, 8–18. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, S.; Liu, F.; Wang, H.; Wang, X.; Wang, Q.; Pollet, B.G.; Wang, R. Highly Efficient and Stable Catalyst Based on Co(OH)2@Ni Electroplated on Cu-Metallized Cotton Textile for Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 29791–29798. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Yan, F.; Liu, L.; Zhu, C.; Li, B.; Chen, Y. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chem. Eng. J. 2021, 406, 126815. [Google Scholar] [CrossRef]
- Han, X.; Wu, X.; Deng, Y.; Liu, J.; Lu, J.; Zhong, C.; Hu, W. Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Adv. Energy Mater. 2018, 8, 1800935. [Google Scholar] [CrossRef]
- Koutauarapu, R.; Reddy, C.V.; Babu, B.; Reddy, K.R.; Cho, M.; Shim, J. Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution-A review. Int. J. Hydrogen Energy 2020, 45, 7716–7740. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, W.; Guo, W.; Yang, Y.; Lei, J.; Luo, H.; Li, N. Macroporous Array Induced Multiscale Modulation at the Surface/Interface of Co(OH)2/NiMo Self--Supporting Electrode for Effective Overall Water Splitting. Adv. Funct. Mater. 2021, 31, 2102117. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, F.; Zhong, D.; Hao, G.; Liu, G.; Li, J.; Zhao, Q. Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting. J. Colloid Interface Sci. 2022, 606, 873–883. [Google Scholar] [CrossRef]
- Gu, L.-F.; Li, C.-F.; Zhao, J.-W.; Xie, L.-J.; Wu, J.-Q.; Ren, Q.; Li, G. Dual modulation of lattice strain and charge polarization induced by Co(OH)2/Ni(OH)2 interfaces for efficient oxygen evolution catalysis. J. Mater. Chem. A 2021, 9, 13279–13287. [Google Scholar] [CrossRef]
- Song, Z.; Han, X.; Deng, Y.; Zhao, N.; Hu, W.; Zhong, C. Clarifying the Controversial Catalytic Performance of Co(OH)2 and Co3O4 for Oxygen Reduction/Evolution Reactions toward Efficient Zn-Air Batteries. ACS Appl. Mater. Interfaces 2017, 9, 22694–22703. [Google Scholar] [CrossRef] [PubMed]
- Dileep, N.P.; Vineesh, T.V.; Sarma, P.V.; Chalil, M.V.; Prasad, C.S.; Shaijumon, M.M. Electrochemically Exfoliated β-Co(OH)2 Nanostructures for Enhanced Oxygen Evolution Electrocatalysis. ACS Appl. Energy Mater. 2020, 3, 1461–1467. [Google Scholar] [CrossRef]
- Guo, D.; Luo, Y.; Yu, X.; Li, Q.; Wang, T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 2014, 8, 174–182. [Google Scholar] [CrossRef]
- SRay, K.; Dhakal, D.; Regmi, C.; Yamaguchui, T.; Lee, S.W. Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4. J. Photochem. Photobiol. A Chem. 2018, 350, 59–68. [Google Scholar]
- Wang, A.-L.; Xu, H.; Li, G.-R. NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting. ACS Energy Lett. 2016, 1, 445–453. [Google Scholar] [CrossRef]
- Huang, M.; Liu, W.; Wang, L.; Liu, J.; Chen, G.; You, W.; Zhang, J.; Yuan, L.; Zhang, X.; Che, R. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810–817. [Google Scholar] [CrossRef]
- Peng, S.; Li, L.; Wu, H.B.; Madhavi, S.; Lou, X.W. Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Adv. Energy Mater. 2015, 5, 1401172. [Google Scholar] [CrossRef]
- Ray, S.K.; Dhakal, D.; Sohng, J.K.; Kim, S.-Y.; Lee, S.W. Efficient inactivation of Pseudomonas aeruginosa by Cu/Co-α-NiMoO4 in visible light. Chem. Eng. J. 2018, 347, 366–378. [Google Scholar] [CrossRef]
- Karmakar, A.; Karthick, K.; Sankar, S.S.; Kumaravel, S.; Ragunath, M.; Kundu, S. Oxygen vacancy enriched NiMoO4 nanorods via microwave heating: A promising highly stable electrocatalyst for total water splitting. J. Mater. Chem. A 2021, 9, 11691–11704. [Google Scholar] [CrossRef]
- Xu, C.; Lu, W.; Yan, L.; Ning, J.; Zheng, C.; Zhong, Y.; Zhang, Z.; Hu, Y. Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. J. Colloid Interface Sci. 2020, 562, 400–408. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew. Chem.-Int. Ed. 2016, 55, 5277–5281. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.-C.; Lee, G.-H.; Kim, D.-W. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. J. Alloys Compd. 2019, 800, 450–455. [Google Scholar] [CrossRef]
- Sriram, S.; Mathi, S.; Vishnu, B.; Jayabharathi, J. Entwined Co(OH)2 In Situ Anchoring on 3D Nickel Foam with Phenomenal Bifunctional Activity in Overall Water Splitting. Energy Fuels 2022, 36, 7006–7016. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, X.; Li, P.; Shao, H.; Li, T.; Liu, H.; Zheng, Q.; Hu, J.; Duan, L.; et al. Electro-synthesized Co(OH)2@CoSe with Co-OH active sites for overall water splitting electrocatalysis. Nanoscale Adv. 2020, 2, 792–797. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Du, X. A nickel molybdenum oxide nanoarray as an efficient and stable electrocatalyst for overall water splitting. New J. Chem. 2020, 44, 8176–8182. [Google Scholar] [CrossRef]
- Chen, L.; Deng, Z.; Chen, Z.; Wang, X. Building Ni9S8/MoS2 Nanosheets Decorated NiMoO4. Nanorods Heterostructure for Enhanced Water Splitting. Adv. Mater. Interfaces 2021, 8, 2101483. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, J.; Nguyen, T.T.-H.; Bae, J.W.; Yu, T.; Lim, B. Facile synthesis of flower-like α-Co(OH)2 nanostructures for electrochemical water splitting and pseudocapacitor applications. J. Ind. Eng. Chem. 2016, 37, 175–179. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, M.; Wang, J.; Zhao, P.; Yang, X.; Cui, S.; Li, Z.; Jiao, Z.; Cheng, L. Preparation of NiMoO4 nanoarrays electrodes with optimized morphology and internal crystal water for efficient supercapacitors and water splitting. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130119. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials. Adv. Energy Mater. 2020, 10, 1903120. [Google Scholar] [CrossRef]
- Xu, Y.; Kraft, M.; Xu, R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem. Soc. Rev. 2016, 45, 3039–3052. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Feng, X. Support and Interface Effects in Water-Splitting Electrocatalysts. Adv. Mater. 2019, 31, 1808167. [Google Scholar] [CrossRef] [PubMed]
Composites. | OER Overpotential (mV vs. RHE) | HER Overpotential (mV vs. RHE) | References |
---|---|---|---|
Co(OH)2/α-NiMoO4 NWs/CC | 170 | 183 | This work |
Mo-Co(OH)2 HNTs | 218 | 125 | [50] |
NiMoO4/NF | 310 | 95 | [55] |
Ni9S8/MoS2 | 360 | 190 | [56] |
a-Co(OH)2 | 270 | 260 | [57] |
NiMoO4 1/2H2O-NRs | 360 | 166 | [58] |
Cu2SeCo(OH)2 | 268 | 241 | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Hao, M.; Liu, X.; Ma, J.; Wang, L.; Li, C.; Wang, W. Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts 2022, 12, 1417. https://doi.org/10.3390/catal12111417
Xu Z, Hao M, Liu X, Ma J, Wang L, Li C, Wang W. Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts. 2022; 12(11):1417. https://doi.org/10.3390/catal12111417
Chicago/Turabian StyleXu, Zhiying, Minghui Hao, Xin Liu, Jingjing Ma, Liang Wang, Chunhu Li, and Wentai Wang. 2022. "Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting" Catalysts 12, no. 11: 1417. https://doi.org/10.3390/catal12111417
APA StyleXu, Z., Hao, M., Liu, X., Ma, J., Wang, L., Li, C., & Wang, W. (2022). Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts, 12(11), 1417. https://doi.org/10.3390/catal12111417