2-(Arylimino)benzylidene-8-arylimino-5,6,7-trihydroquinoline Cobalt(II) Dichloride Polymerization Catalysts for Polyethylenes with Narrow Polydispersity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Co1–Co6
2.2. Catalytic Evaluation of Co1–Co6 for Ethylene Polymerization
2.2.1. Optimization of the Polymerization Conditions Using Co6/MAO
2.2.2. Catalytic Evaluation of Co1–Co6 Using MAO as Co-Catalyst under the Optimal Conditions
2.2.3. Optimization of the Polymerization Conditions Using Co6/MMAO
2.2.4. Catalytic Evaluation of Co1–Co6 Using MMAO as Co-Catalyst under the Optimal Conditions
2.3. Microstructural Properties of Resultant Polyethylenes
3. Experimental Section
3.1. General Considerations
3.2. Synthesis of [2-(ArN=CPh)-8-(NAr)-C9H8N]CoCl2 (Co1–Co6)
3.3. X-ray Crystallographic Studies
3.4. Procedures for Ethylene Polymerization
3.4.1. Ethylene Polymerization under 1 atm Ethylene
3.4.2. Ethylene Polymerization under 5 or 10 atm Ethylene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107, 1745–1776. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands. Coord. Chem. Rev. 2010, 254, 431–455. [Google Scholar] [CrossRef]
- Small, B.L. Discovery and development of pyridine-bis(imine) and related catalysts for olefin polymerization and oligomerization. Acc. Chem. Res. 2015, 48, 2599–2611. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yang, W.; Sun, W.-H. Recent progress on transition metal (Fe, Co, Ni, Ti and V) complex catalysts in olefin polymerization with high thermal stability. Chin. J. Chem. 2017, 35, 531–540. [Google Scholar] [CrossRef]
- Wang, Z.; Solan, G.A.; Zhang, W.; Sun, W.-H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev. 2018, 363, 92–108. [Google Scholar] [CrossRef]
- Bariashir, C.; Jiang, S.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.-H. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization. Coord. Chem. Rev. 2019, 385, 208–229. [Google Scholar] [CrossRef]
- Small, B.L.; Brookhart, M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-Olefins. J. Am. Chem. Soc. 1998, 120, 7143–7144. [Google Scholar] [CrossRef]
- Liu, M.; Brookhart, M. CF3O-Functionalized bis(arylimino)pyridine cobalt ethylene polymerization catalysts: Harnessing solvent effects on performance and polymer properties. Organometallics 2022. [Google Scholar] [CrossRef]
- Liu, T.; Liu, M.; Ma, Y.; Solan, G.A.; Liang, T.; Sun, W.-H. Cobalt catalysts bearing ortho-(4,4′-dichlorobenzhydryl) substituents and their use in generating narrowly dispersed polyethylene of high linearity. Eur J. Inorg. Chem. 2022, e202200396. [Google Scholar] [CrossRef]
- Bianchini, C.; Giambastiani, G.; Rios, I.G.; Mantovani, G.; Meli, A.; Segarra, A.M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord. Chem. Rev. 2006, 250, 1391–1418. [Google Scholar] [CrossRef]
- Flisak, Z.; Sun, W.-H. Progression of diiminopyridines: From single application to catalytic versatility. ACS. Catal. 2015, 5, 4713–4724. [Google Scholar] [CrossRef]
- Ma, J.; Feng, C.; Wang, S.; Zhao, K.-Q.; Sun, W.-H.; Redshaw, C.; Solan, G.A. Bi- and tridentate imino-based iron and cobalt pre-catalysts for ethylene oligo-/polymerization. Inorg. Chem. Front. 2014, 1, 14–34. [Google Scholar] [CrossRef]
- Gao, R.; Sun, W.-H.; Redshaw, C. Nickel complex pre-catalysts in ethylene polymerization: New approaches to elastomeric materials. Catal. Sci. Technol. 2013, 3, 1172–1179. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, W.-H.; Redshaw, C. Tailoring iron complexes for ethylene oligomerization and/or polymerization. Dalton. Trans. 2013, 42, 8988–8997. [Google Scholar] [CrossRef]
- Jie, S.; Sun, W.-H.; Xiao, T. Prospects and crucial problems in oligomerization and polymerization with iron and cobalt complex catalysts. Chin. J. Polym. Sci. 2010, 28, 299–304. [Google Scholar] [CrossRef]
- Xiao, T.; Zhang, W.; Lai, J.; Sun, W.-H. Iron-oriented ethylene oligomerization and polymerization: The iron age or a flash in the pan. Comptes Rendus Chim. 2011, 14, 851–855. [Google Scholar] [CrossRef]
- Sun, W.-H.; Zhang, S.; Zuo, W. Our variations on iron and cobalt catalysts toward ethylene oligomerization and polymerization. Comptes Rendus Chim. 2008, 11, 307–316. [Google Scholar] [CrossRef]
- Sun, W.-H.; Zhao, W.; Yu, J.; Zhang, W.; Hao, X.; Redshaw, C. Enhancing the activity and thermal stability of iron precatalysts using 2-(1-{2,6-bis[bis(4-fluorophenyl)methyl]-4-methylphenylimino}ethyl)-6-[1-(arylimino)ethyl]pyridines. Macromol. Chem. Phys. 2012, 213, 1266–1273. [Google Scholar] [CrossRef]
- Xing, Q.; Zhao, T.; Du, S.; Yang, W.; Liang, T.; Redshaw, C.; Sun, W.-H. Biphenyl-bridged 6-(1-aryliminoethyl)-2-iminopyridyl cobalt complexes: Synthesis, characterization, and ethylene polymerization behavior. Organometallics 2014, 33, 1382–1388. [Google Scholar] [CrossRef]
- Cao, X.; He, F.; Zhao, W.; Cai, Z.; Hao, X.; Shiono, T.; Redshawd, C.; Sun, W.-H. 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino) ethyl]-6-[1-(arylimino)ethyl]pyridyliron(II) dichlorides: Synthesis, characterization and ethylene polymerization behavior. Polymer 2012, 53, 1870–1880. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Liang, T.; Redshaw, C.; Li, Y.; Sun, W.-H. Synthesis, characterization and catalytic behavior toward ethylene of 2-[1-(4,6-dimethyl-2-benzhydrylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridylmetal (iron or cobalt) chlorides. Dalton. Trans. 2013, 42, 9188–9197. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, H.; Zhang, W.; Hao, X.; Sun, W.-H. Access to highly active and thermally stable iron procatalysts using bulky 2-[1-(2,6-dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands. Chem. Commun. 2011, 47, 3257–3259. [Google Scholar] [CrossRef] [PubMed]
- Small, B.L.; Brookhart, M.; Bennett, A.M.A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 1998, 120, 4049–4050. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; McTavish, S.J.; Solan, G.A.; White, A.J.P.; Williams, D.J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 849–850. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Bruce, M.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; Mastroianni, S.; McTavish, S.J.; Redshaw, C.; Solan, G.A.; Stromberg, S.; et al. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. J. Am. Chem. Soc. 1999, 121, 8728–8740. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Mastroianni, S.; Solan, G.A.; Baugh, S.P.D.; Redshaw, C.; Gibson, V.C.; White, A.J.P.; Williams, D.J.; Elsegood, M.R.J. Oligomerisation of ethylene by bis(imino)pyridyliron and -cobalt complexes. Chem. Eur. J. 2000, 6, 2221–2231. [Google Scholar] [CrossRef]
- Knijnenburg, Q.; Gambarotta, S.; Budzelaar, P.H.M. Ligand-centred reactivity in diiminepyridine complexes. Dalton. Trans. 2006, 5442–5448. [Google Scholar] [CrossRef]
- Scott, J.; Gambarotta, S.; Korobkov, I.; Budzelaar, P.H.M. Metal versus ligand alkylation in the reactivity of the (bis-iminopyridinato) Fe catalyst. J. Am. Chem. Soc. 2005, 127, 13019–13029. [Google Scholar] [CrossRef]
- Sugiyama, H.; Aharonian, G.; Gambarotta, S.; Yap, G.P.A.; Budzelaar, P.H.M. Participation of the α,α′-diiminopyridine ligand system in reduction of the metal center during alkylation. J. Am. Chem. Soc. 2002, 124, 12268–12274. [Google Scholar] [CrossRef]
- Bouwkamp, M.W.; Lobkovsky, E.; Chirik, P.J. Bis(imino)pyridine ligand deprotonation promoted by a transient iron amide. Inorg. Chem. 2006, 45, 2–4. [Google Scholar] [CrossRef]
- Smit, T.M.; Tomov, A.K.; Britovsek, G.J.P.; Gibson, V.C.; White, A.J.P.; Williams, D.J. The effect of imine-carbon substituents in bis(imino)pyridine-based ethylene polymerisation catalysts across the transition series. Catal. Sci. Technol. 2012, 2, 643–655. [Google Scholar] [CrossRef]
- McTavish, S.; Britovsek, G.J.P.; Smit, T.M.; Gibson, V.C.; White, A.J.P.; Williams, D.J. Iron-based ethylene polymerization catalysts supported by bis(imino)pyridine ligands: Derivatization via deprotonation/alkylation at the ketimine methyl position. J. Mol. Catal. A-Chem. 2007, 261, 293–300. [Google Scholar] [CrossRef]
- Sun, W.-H.; Kong, S.; Chai, W.; Shiono, T.; Redshaw, C.; Hu, X.; Guo, C.; Hao, X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7- trihydroquinolylcobalt dichloride: Synthesis and polyethylene wax formation. Appl. Catal. A-Gen. 2012, 447–448, 67–73. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, W.; Yue, E.; Liang, T.; Hu, X.; Sun, W.-H. Controlling the molecular weights of polyethylene waxes using the highly active precatalysts of 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8- tetrahydrocycloheptapyridylcobalt chlorides: Synthesis, characterization, and catalytic behavior. Dalton. Trans. 2016, 45, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Ba, J.; Du, S.; Yue, E.; Hu, X.; Flisak, Z.; Sun, W.-H. Constrained formation of 2-(1-(arylimino)ethyl)-7-arylimino-6,6-dimethyl cyclopentapyridines and their cobalt(II) chloride complexes: Synthesis, characterization and ethylene polymerization. RSC. Adv. 2015, 5, 32720–32729. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, W.; Sun, Y.; Hu, X.; Solan, G.A.; Sun, W.-H. Bis(imino)-6,7-dihydro-5H-quinoline-cobalt complexes as highly active catalysts for the formation of vinyl-terminated PE waxes; steps towards inhibiting deactivation pathways through targeted ligand design. New. J. Chem. 2016, 40, 8012–8023. [Google Scholar] [CrossRef]
- Han, M.; Zuo, Z.; Ma, Y.; Solan, G.A.; Hu, X.; Liang, T.; Sun, W.-H. Thermally stable and highly active cobalt precatalysts for vinyl-polyethylenes with narrow polydispersities: Integrating fused-ring and imino-carbon protection into ligand design. RSC. Adv. 2021, 11, 39869–39878. [Google Scholar] [CrossRef]
- Zuo, Z.; Han, M.; Ma, Y.; Solan, G.A.; Hu, X.; Liang, T.; Sun, W.-H. Fluorinated bis(arylimino)-6,7-dihydro-5H-quinoline-cobalt polymerization catalysts: Electronic versus steric modulation in the formation of vinyl-terminated linear PE waxes. Appl. Organomet. Chem. 2022, 36, e6500. [Google Scholar] [CrossRef]
- Du, S.; Zhang, W.; Yue, E.; Huang, F.; Liang, T.; Sun, W.-H. α,α′-Bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridylcobalt chlorides: Synthesis, characterization, and ethylene polymerization behavior. Eur. J. Inorg. Chem. 2016, 11, 1748–1755. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Guo, J.; Liu, Q.; Solan, G.A.; Liang, T.; Sun, W.-H. Bis(imino)pyridines fused with 6- and 7-membered carbocylic rings as N,N,N-scaffolds for cobalt ethylene polymerization catalysts. Dalton Trans. 2019, 48, 2582–2591. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wedeking, K.; Zuo, W.; Zhang, D.; Sun, W.-H. Iron(II) and cobalt(II) complexes bearing N-((pyridin-2-yl)methylene) quinolin-8-amine derivatives: Synthesis and application to ethylene oligomerization. J. Organomet. Chem. 2008, 693, 1073–1080. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Du, S.; Guo, C.-Y.; Hao, X.; Sun, W.-H. 2-(1-(2,4-Bis((di(4-fluorophenyl)methyl)-6- methylphenylimino) ethyl)-6-(1-(arylimino)ethyl)pyridylmetal (iron or cobalt) complexes: Synthesis, characterization, and ethylene polymerization behavior. Macromol. Chem. Phys. 2014, 215, 1797–1809. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, J.; Song, S.; Yang, W.; Liu, H.; Hao, X.; Redshaw, C.; Sun, W.-H. Controlling the ethylene polymerization parameters in iron pre-catalysts of the type 2-[1-(2,4-dibenzhydryl-6-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl] pyridyliron dichloride. Polymer 2012, 53, 130–137. [Google Scholar] [CrossRef]
- Lai, J.; Zhao, W.; Yang, W.; Redshaw, C.; Liang, T.; Liu, Y.; Sun, W.-H. 2-[1-(2,4-dibenzhydryl-6-methylphenylimino)ethyl]- 6-[1-(arylimino)ethyl] pyridylcobalt(II) dichlorides: Synthesis, characterization and ethylene polymerization behavior. Polym. Chem. 2012, 3, 787–793. [Google Scholar] [CrossRef]
- Guo, L.; Zada, M.; Zhang, W.; Vignesh, A.; Zhu, D.; Ma, Y.; Liang, T.; Sun, W.-H. Highly linear polyethylenes tailored with 2,6- bis [1-(p-dibenzo-cycloheptylarylimino)ethyl]- pyridylcobalt dichlorides. Dalton Trans. 2019, 48, 5604–5613. [Google Scholar] [CrossRef]
- Zhang, R.; Han, M.; Oleynik, I.V.; Solan, G.A.; Oleynik, I.I.; Ma, Y.; Liang, T.; Sun, W.-H. Boosting activity, thermostability, and lifetime of iron ethylene polymerization catalysts through gem-dimethyl substitution and incorporation of ortho-cycloalkyl substituents. Appl. Organomet. Chem. 2021, 35, e6376. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, R.; Hao, X.; Sun, W.-H. 2-Oxazoline/benzoxazole-1,10-phenanthrolinylmetal (iron, cobalt or nickel) dichloride: Synthesis, characterization and their catalytic reactivity for the ethylene oligomerization. J. Organomet. Chem. 2008, 693, 3867–3877. [Google Scholar] [CrossRef]
- Kulkarni, N.V.; Elkin, T.; Tumaniskii, B.; Botoshansky, M.; Shimon, L.J.; Eisen, M.S. Asymmetric Bis (formamidinate) Group 4 Complexes: Synthesis, Structure and Their Reactivity in the Polymerization of α-Olefins. Organometallics 2014, 33, 3119–3136. [Google Scholar] [CrossRef]
- Elkin, T.; Kulkarni, N.V.; Tumanskii, B.; Botoshansky, M.; Shimon, L.J.; Eisen, M.S. Synthesis and structure of Group 4 symmetric amidinate complexes and their reactivity in the polymerization of α-olefins. Organometallics 2013, 32, 6337–6352. [Google Scholar] [CrossRef]
- Zhang, Y.; Suo, H.; Huang, F.; Liang, T.; Hu, X.; Sun, W.-H. Thermo-sTable 2-(arylimino)benzylidene-9-arylimino-5,6,7,8- tetrahydrocyclohepta[b]pyridyliron(II) precatalysts toward ethylene polymerization and highly linear polyethylenes. J. Polym. Sci. Pol. Chem. 2016, 55, 830–842. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, N.; Xiang, J.; Solan, G.A.; Suo, H.; Ma, Y.; Liang, T.; Sun, W.-H. Bis-cycloheptyl-fused bis(imino)pyridine-cobalt catalysts for PE wax formation: Positive effects of fluoride substitution on catalytic performance and thermal stability. Dalton Trans. 2020, 49, 9425–9437. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Oleynik, I.I.; Liu, M.; Ma, Y.; Oleynik, I.V.; Solan, G.A.; Liang, T.; Sun, W.-H. Ring size enlargement in an ortho-cycloalkyl-substituted bis(imino)pyridine-cobalt ethylene polymerization catalyst and its impact on performance and polymer properties. Appl. Organomet. Chem. 2022, 36, e6529. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, W.; Cao, F.; Jiang, Y.; Zhang, R.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.-H. Remote dibenzocycloheptyl substitution on a bis(arylimino)pyridyl-iron ethylene polymerization catalyst; enhanced thermal stability and unexpected effects on polymer properties. Polym. Chem. 2021, 12, 4214–4225. [Google Scholar] [CrossRef]
- Martinez-Romo, A.; Gonzalez-Mota, R.; Soto-Bernal, J.J.; Rosales-Candelas, I. Investigating the degradability of HDPE, LDPE, PE-BIO, and PE-OXO films under UV-B radiation. J. Spectrosc. 2015, 2015, 586514. [Google Scholar] [CrossRef]
- Glenz, W.; Peterlin, A. IR-studies of drawn polyethylene part III. The orientation of vinyl and methyl end-groups. Makromol. Chem. 1971, 150, 163–177. [Google Scholar] [CrossRef]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, C.K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Kennedy, A.R.; Nelson, D.J. Synthesis and characterisation of an N-heterocyclic carbene with spatially-defined steric impact. Dalton Trans. 2016, 45, 11772–11780. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, W.; Oleynik, I.I.; Solan, G.A.; Oleynik, I.V.; Liang, T.; Sun, W.-H. Probing the effect of ortho-cycloalkyl ring size on activity and thermostability in cycloheptyl-fused N,N,N-iron ethylene polymerization catalysts. Dalton Trans. 2020, 49, 136–146. [Google Scholar] [CrossRef]
- Huang, F.; Xing, Q.; Liang, T.; Flisak, Z.; Ye, B.; Hu, X.; Yang, W.; Sun, W.-H. 2-(1-aryliminoethyl)-9-arylimino-5,6,7,8- tetrahydrocycloheptapyridyl iron(II) dichloride: Synthesis, characterization, and the highly active and tunable active species in ethylene polymerization. Dalton Trans. 2014, 43, 16818–16829. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal- structure determination. Acta. Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta. Cryst. 2015, C71, 3–8. [Google Scholar]
- Spek, L. Bis-cycloheptyl-fused bis(imino)pyridine-cobalt catalysts for PE wax formation: Positive effects of fluoride substitution on catalytic performance and thermal stability. Acta. Cryst. D-Biol. Cryst. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Co2 | Co5 | |
---|---|---|
Bond lengths (Å) | ||
Co(1)–Cl(2) | 2.239(3) | 2.1984(10) |
Co(1)–Cl(1) | 2.256(3) | 2.2914(10) |
Co(1)–N(2) | 2.051(8) | 2.051(2) |
Co(1)–N(1) | 2.295(7) | 2.310(3) |
Co(1)–N(3) | 2.258(8) | 2.214(2) |
N(2)–C(12) | 1.368(12) | 1.343(4) |
N(2)–C(8) | 1.349(11) | 1.335(4) |
N(1)–C(7) | 1.286(11) | 1.288(4) |
N(3)–C(16) | 1.242(12) | 1.285(4) |
Bond angles (°) | ||
Cl(1)–Co(1)–Cl(2) | 117.10(13) | 117.32(4) |
N(1)–Co(1)–N(3) | 145.4(3) | 146.07(9) |
N(1)–Co(1)–Cl(1) | 99.1(2) | 99.37(7) |
N(1)–Co(1)–Cl(2) | 97.35(2) | 99.04(7) |
N(2)–Co(1)–Cl(1) | 103.6(2) | 92.64(8) |
N(2)–Co(1)–Cl(2) | 139.3(2) | 150.02(8) |
N(2)–Co(1)–N(3) | 74.7(3) | 75.42(9) |
N(1)–Co(1)–N(2) | 73.5(3) | 73.10(9) |
N(3)–Co(1)–Cl(1) | 101.2(2) | 94.35(7) |
N(3)–Co(1)–Cl(2) | 97.9(2) | 101.91(7) |
Entry | T (°C) | Al:Co | t (min) | Mass of PE (g) | Activity b | Tm c (°C) | Mw d | Mw/Mn d | Ri e | Rt f |
---|---|---|---|---|---|---|---|---|---|---|
1 | 30 | 2000 | 30 | 2.3 | 2.3 | 123.9 | 1.5 | 1.5 | 164.0 | 4600.0 |
2 | 40 | 2000 | 30 | 3.7 | 3.7 | 123.6 | 1.6 | 1.8 | 263.8 | 8325.0 |
3 | 50 | 2000 | 30 | 6.9 | 6.9 | 122.6 | 1.7 | 1.5 | 492.0 | 12,176.5 |
4 | 60 | 2000 | 30 | 6.1 | 6.1 | 120.2 | 2.4 | 1.7 | 434.9 | 8641.7 |
5 | 70 | 2000 | 30 | 2.9 | 2.9 | 122.8 | 2.2 | 1.5 | 206.8 | 3954.5 |
6 | 50 | 1750 | 30 | 6.3 | 6.3 | 121.9 | 1.5 | 2.1 | 449.2 | 17,640.0 |
7 | 50 | 2250 | 30 | 6.5 | 6.5 | 122.1 | 1.6 | 1.5 | 463.5 | 12,187.5 |
8 | 50 | 2500 | 30 | 6.5 | 6.5 | 121.5 | 1.6 | 1.5 | 463.5 | 12,187.5 |
9 | 50 | 2750 | 30 | 6.6 | 6.6 | 121.8 | 1.6 | 1.6 | 470.6 | 13,200.0 |
10 | 50 | 3000 | 30 | 5.6 | 5.6 | 121.8 | 1.5 | 2.0 | 399.3 | 14,933.3 |
11 | 50 | 4000 | 30 | 5.5 | 5.5 | 122.5 | 1.3 | 1.4 | 392.2 | 11,846.2 |
12 | 50 | 2000 | 5 | 3.9 | 23.1 | 118.9 | 1.3 | 1.4 | 1668.4 | 50,400.0 |
13 | 50 | 2000 | 15 | 4.8 | 7.7 | 120.5 | 1.5 | 1.5 | 684.5 | 19,200.0 |
14 | 50 | 2000 | 45 | 6.3 | 4.2 | 121.1 | 1.7 | 1.6 | 299.5 | 7905.9 |
15 | 50 | 2000 | 60 | 8.2 | 4.1 | 123.2 | 1.9 | 1.7 | 292.3 | 7336.8 |
16 g | 50 | 2000 | 30 | 2.1 | 2.1 | 122.4 | 1.1 | 1.3 | 149.7 | 4963.6 |
17 h | 50 | 2000 | 30 | - | - | - | - | - | - | - |
Entry | Precat. | Mass of PE (g) | Activity b | Tm c (°C) | Mw d | Mw/Mn d | Ri e | Rt f |
---|---|---|---|---|---|---|---|---|
1 | Co1 | 5.1 | 5.1 | 133.9 | 68.2 | 2.7 | 363.6 | 403.8 |
2 | Co2 | 16.5 | 16.5 | 123.9 | 3.3 | 1.4 | 1176.5 | 14,000.0 |
3 | Co3 | 5.0 | 5.0 | 132.5 | 55.4 | 1.4 | 356.5 | 252.7 |
4 | Co4 | 3.9 | 3.9 | 132.4 | 62.8 | 2.8 | 278.1 | 347.8 |
5 | Co5 | 3.8 | 3.8 | 134.7 | 198.7 | 1.7 | 270.9 | 65.0 |
6 | Co6 | 6.9 | 6.9 | 122.6 | 1.7 | 1.5 | 492.0 | 12,176.5 |
Entry | T (°C) | Al:Co | t (min) | Mass of PE (g) | Activity b | Tm c (°C) | Mw d | Mw/Mn d | Ri e | Rt f |
---|---|---|---|---|---|---|---|---|---|---|
1 | 30 | 2000 | 30 | 1.9 | 1.9 | 123.1 | 3.7 | 1.1 | 135.5 | 1129.7 |
2 | 40 | 2000 | 30 | 2.4 | 2.4 | 121.7 | 2.4 | 1.3 | 171.1 | 2600.0 |
3 | 50 | 2000 | 30 | 2.2 | 2.2 | 121.5 | 2.1 | 1.3 | 156.9 | 2723.8 |
4 | 60 | 2000 | 30 | 1.5 | 1.5 | 120.6 | 5.0 | 1.7 | 107.0 | 1020.0 |
5 | 40 | 2250 | 30 | 5.4 | 5.4 | 122.0 | 2.7 | 1.3 | 385.0 | 5200.0 |
6 | 40 | 2500 | 30 | 2.5 | 2.5 | 121.9 | 2.4 | 1.3 | 178.3 | 2708.3 |
7 | 40 | 2750 | 30 | 1.5 | 1.5 | 122.9 | 2.6 | 1.3 | 107.0 | 1500.0 |
8 | 40 | 3000 | 30 | 1.1 | 1.1 | 122.4 | 2.8 | 1.4 | 78.4 | 1100.0 |
9 | 40 | 2250 | 5 | 3.3 | 19.8 | 119.9 | 1.8 | 1.3 | 1411.8 | 28,600.0 |
10 | 40 | 2250 | 15 | 4.2 | 8.4 | 121.6 | 2.6 | 1.3 | 598.9 | 8400.0 |
11 | 40 | 2250 | 45 | 7.9 | 5.2 | 121.8 | 2.8 | 1.3 | 375.5 | 4890.5 |
12 | 40 | 2250 | 60 | 10.2 | 5.1 | 122.2 | 6.1 | 2.1 | 363.6 | 3511.5 |
13 g | 40 | 2250 | 30 | 1.2 | 1.2 | 121.5 | 1.1 | 1.3 | 85.6 | 2836.4 |
14 h | 40 | 2250 | 30 | - | - | - | - | - | - | - |
Entry | Precat. | Mass of PE (g) | Activity b | Tm c (°C) | Mw d | Mw/Mn d | Ri e | Rt f |
---|---|---|---|---|---|---|---|---|
1 | Co1 | 4.3 | 4.3 | 133.5 | 81.6 | 1.8 | 306.6 | 189.7 |
2 | Co2 | 11.1 | 11.1 | 123.4 | 3.6 | 1.5 | 791.4 | 9250.0 |
3 | Co3 | 4.1 | 4.1 | 134.1 | 138.5 | 3.1 | 292.3 | 183.5 |
4 | Co4 | 3.7 | 3.7 | 134.4 | 150.2 | 2.9 | 263.8 | 142.9 |
5 | Co5 | 3.1 | 3.1 | 134.7 | 386.6 | 2.3 | 221.0 | 36.9 |
6 | Co6 | 5.4 | 5.4 | 122.0 | 2.7 | 1.3 | 385.0 | 5200.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Z.; Zhang, Q.; Han, M.; Liu, M.; Sun, Y.; Ma, Y.; Sun, W.-H. 2-(Arylimino)benzylidene-8-arylimino-5,6,7-trihydroquinoline Cobalt(II) Dichloride Polymerization Catalysts for Polyethylenes with Narrow Polydispersity. Catalysts 2022, 12, 1119. https://doi.org/10.3390/catal12101119
Zuo Z, Zhang Q, Han M, Liu M, Sun Y, Ma Y, Sun W-H. 2-(Arylimino)benzylidene-8-arylimino-5,6,7-trihydroquinoline Cobalt(II) Dichloride Polymerization Catalysts for Polyethylenes with Narrow Polydispersity. Catalysts. 2022; 12(10):1119. https://doi.org/10.3390/catal12101119
Chicago/Turabian StyleZuo, Zheng, Qiuyue Zhang, Mingyang Han, Ming Liu, Yang Sun, Yanping Ma, and Wen-Hua Sun. 2022. "2-(Arylimino)benzylidene-8-arylimino-5,6,7-trihydroquinoline Cobalt(II) Dichloride Polymerization Catalysts for Polyethylenes with Narrow Polydispersity" Catalysts 12, no. 10: 1119. https://doi.org/10.3390/catal12101119
APA StyleZuo, Z., Zhang, Q., Han, M., Liu, M., Sun, Y., Ma, Y., & Sun, W.-H. (2022). 2-(Arylimino)benzylidene-8-arylimino-5,6,7-trihydroquinoline Cobalt(II) Dichloride Polymerization Catalysts for Polyethylenes with Narrow Polydispersity. Catalysts, 12(10), 1119. https://doi.org/10.3390/catal12101119