Kinetic Study on Microwave-Assisted Oligomerization of 1-Decene over a HY Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Temperature on Oligomer Product Composition
2.2. Oligomer Product Characterization Results
2.3. Kinetic Modeling Results
3. Experimental Setup
3.1. Experimental Setup and Operation
3.2. Lubricant Product Characterization Techniques
3.3. Microkinetics of 1-Decene Oligomerization
3.4. Solving Kinetic Equation
3.5. Verification of Proposed Kinetic Equations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Echaroj, S.; Santikunaporn, M.; Chavadej, S. Oligomerization of 1-decene over sulfated alumina catalysts for the production of synthetic fuels and lubricants: Modelling and verification. React. Kinet. Mech. Catal. 2017, 121, 629–644. [Google Scholar] [CrossRef]
- Shamiri, A.; Chakrabarti, M.H.; Jahan, S.; Hussain, M.A.; Kaminsky, W.; Aravind, P.V.; Yehye, W.A. The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing Ability. Materials 2014, 7, 5069–5108. [Google Scholar] [CrossRef] [PubMed]
- Nifanťev, I.; Ivchenko, P. Fair Look at Coordination Oligomerization of Higher α–Olefins. Polymers 2020, 12, 1082. [Google Scholar] [CrossRef]
- Techopittayakul, T.; Echaroj, S.; Santikunaporn, M.; Asavatesanupap, C.; Chen, Y.H.; Yuan, M.H. Kinetic modeling of 1-decene oligomerization to synthetic fuels and base oil over tungstated-zirconia catalyst. React. Kinet. Mech. Catal. 2019, 126, 529–546. [Google Scholar] [CrossRef]
- Echaroj, S.; Santikunaporn, M.; Chavadej, S. Transformation of Bioderived 1-Decanol to Diesel-like Fuel and Biobased Oil via Dehydration and Oligomerization Reactions. Energy Fuels 2017, 31, 9465–9476. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Gaigneaux, E.M. Alkylation of resorcinol with tertiary butanol over zeolite catalysts: Shape selectivity vs. acidity. Catal. Commun. 2021, 152, 106291. [Google Scholar] [CrossRef]
- Romero, D.; Rohling, R.; Meng, L.; Rigutto, M.; Hensen, E.J.M. Shape selectivity in linear paraffins hydroconversion in 10-membered-ring pore zeolites. J. Catal. 2021, 394, 284–298. [Google Scholar] [CrossRef]
- Castro, C.; Shyu, H.; Xaba, L.; Bair, R.; Yeh, D. Performance and onsite regeneration of natural zeolite for ammonium removal in a field-scale non-sewered sanitation system. Sci. Total. Environ. 2021, 776, 145938. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Sadjadi, S.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M. New less-toxic halloysite-supported ionic liquid/AlCl3 oligomerization catalysts: A comparative study on the effects of various ionic liquids on the properties of polyalphaolefins. Mol. Catal. 2021, 509, 111648. [Google Scholar] [CrossRef]
- Rahbar, A.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M. Microstructural study on low viscosity poly-α-olefin oils synthesized via AlCl3/H2O cationic system in the present of xylene and heptane solvents. Fuel 2021, 302, 121111. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Abbasian Arani, A.A.; Esfandeh, S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng. 2018, 143, 493–506. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Yu, S.; Shen, Y.; Wu, Y.; Chen, B.; Nie, K.; Zhang, X. Modification and synthesis of low pour point plant-based lubricants with ionic liquid catalysis. Renew. Energy 2020, 153, 1320–1329. [Google Scholar] [CrossRef]
- Muraza, O. Maximizing Diesel Production through Oligomerization: A Landmark Opportunity for Zeolite Research. Ind. Eng. Chem. Res. 2015, 54, 781–789. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, S.; Shen, D. Experimental and Kinetic Study on Lignin Depolymerization in Water/Formic Acid System. Int. J. Mol. Sci. 2017, 18, 2082. [Google Scholar] [CrossRef] [Green Version]
- Kamal, S.; Mahajani, S. Kinetic study for oligomerization of acetaldehyde over cation exchange resin. Appl. Catal. A Gen. 2020, 608, 117841. [Google Scholar] [CrossRef]
- Afreen, G.; Pathak, S.; Upadhyayula, S. Gas phase alkylation of biomass-derived m-cresol with iso-propanol over zinc modified HY zeolite: Elucidating reaction mechanism and kinetics including deactivation. Chem. Engin. J. 2020, 400, 125824. [Google Scholar] [CrossRef]
- Antunes, B.M.; Rodrigues, A.; Lin, Z.; Portugal, I.; Silva, C.M. Alkenes oligomerization with resin catalysts. Fuel Process. Technol. 2015, 138, 86–99. [Google Scholar] [CrossRef]
- Reinoso, D.M.; Boldrini, D. Kinetic study of fuel bio-additive synthesis from glycerol esterification with acetic acid over acid polymeric resin as catalyst. Fuel 2019, 264, 116879. [Google Scholar] [CrossRef]
- Dagle, V.L.; Lopez, J.S.; Cooper, A.; Luecke, J.; Swita, M.; Dagle, R.A.; Gaspar, D. Production and fuel properties of iso-olefins with controlled molecular structure and obtained from butene oligomerization. Fuel 2020, 277, 118147. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, P.; Wu, G. Fundamental kinetics model of acidity-activity relation for ethylene oligomerization and aromatization over ZSM-5 zeolites. Chem. Eng. Sci. 2021, 229, 116144. [Google Scholar] [CrossRef]
- Gou, M.-L.; Cai, J.; Song, W.; Liu, Z.; Ren, Y.-L.; Pan, B.; Niu, Q. Coking and deactivation behavior of ZSM-5 during the isomerization of styrene oxide to phenylacetaldehyde. Chem. Catal. Commun. 2017, 98, 116–120. [Google Scholar] [CrossRef]
- Díaz, M.; Epelde, E.; Valecillos, J.; Izaddoust, S.; Aguayo, A.T.; Bilbao, J. Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Appl. Catal. B Environ. 2021, 291, 120076. [Google Scholar] [CrossRef]
- Kwon, M.-H.; Chae, H.-J.; Park, M.B. Oligomerization of 1-hexene over designed SBA-15 acid catalysts. J. Ind. Eng. Chem. 2018, 65, 397–405. [Google Scholar] [CrossRef]
- Granollers, M.; Izquierdo, J.F.; Fité, C.; Cunill, F. Kinetic study of methyl-butenes dimerization and trimerization in liquid-phase over a macroreticular acid resin. Chem. Engin. J. 2013, 234, 266–275. [Google Scholar] [CrossRef]
- Cruz, V.; Izquierdo, J.; Cunill, F.; Tejero, J.; Iborra, M.; Fité, C.; Bringué, R. Kinetic modelling of the liquid-phase dimerization of isoamylenes on Amberlyst 35. React. Funct. Polym. 2006, 67, 210–224. [Google Scholar] [CrossRef]
- Mlinar, A.N.; Zimmerman, P.M.; Celik, F.E.; Head-Gordon, M.; Bell, A.T. Effects of Brønsted-acid site proximity on the oligomerization of propene in H-MFI. J. Catal. 2012, 288, 65–73. [Google Scholar] [CrossRef]
- Yue, C.; Liu, C.; Mezari, B.; Brückner, A.; Pidko, E.; Rigutto, M.S.; Hensen, E.J. The nature of strong Brønsted acidity of Ni-SMM clay. Appl. Catal. B Environ. 2016, 191, 62–75. [Google Scholar] [CrossRef]
- Liu, C.; Tranca, I.; van Santen, R.A.; Hensen, E.J.M.; Pidko, E.A. Scaling Relations for Acidity and Reactivity of Zeolites. J. Phys. Chem. C 2017, 121, 23520–23530. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Fan, Y.; Yuan, M.; Min, F.; Wu, G.; Ding, Y.; Froment, G.F. Single-event kinetic modeling of ethene oligomerization on ZSM-5. Catal. Today 2018, 316, 129–141. [Google Scholar] [CrossRef]
- Kobayashi, M.; Saitoh, M.; Ishida, K.; Yachi, H. Viscosity Properties and Molecular Structure of Lube Base Oil Prepared from Fischer-Tropsch Waxes. J. Jpn. Pet. Inst. 2005, 48, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.; Chae, H.-J.; Park, M.B. Oligomerization of light olefins over ZSM-5 and beta zeolite catalysts by modifying textural properties. Appl. Catal. A Gen. 2018, 553, 15–23. [Google Scholar] [CrossRef]
- Fabozzi, F.J.; Focardi, S.M.; Rachev, S.T.; Arshanapalli, B.A. The Basics of Financial Econometrics: Tools, Concepts, and Asset Management Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Li, Y.; Zhang, Q.; Wang, L.; Liang, L. An AIC-based approach to identify the most influential variables in eco-efficiency evaluation. Expert Syst. Appl. 2020, 167, 113883. [Google Scholar] [CrossRef]
- Olutoye, M.A.; Hameed, B.H. Kinetics and deactivation of a dual-site heterogeneous oxide catalyst during the transesterification of crude jatropha oil with methanol. J. Taibah Univ. Sci. 2016, 10, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, A.; Pouilloux, Y.; Coupard, V.; Uzio, D.; Pinard, L. Deactivation mechanism and regeneration study of Zn/HZSM-5 catalyst in ethylene transformation. Appl. Catal. A Gen. 2021, 611, 117976. [Google Scholar] [CrossRef]
- Murzin, D.Y. Catalyst deactivation and structure sensitivity. Catal. Sci. Technol. 2014, 4, 3340–3350. [Google Scholar] [CrossRef]
- Menéndez, J.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.; Bermúdez, J. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.; Bandyopadhyay, A.R.; Jasra, R.; Gagjibhai, M.M. Mechanistic Study of the Oligomerization of Olefins. Ind. Eng. Chem. Res. 2014, 53, 7622–7628. [Google Scholar] [CrossRef]
- Ding, X.; Geng, S.; Li, C.; Yang, C.; Wang, G. Effect of acid density of HZSM-5 on the oligomerization of ethylene in FCC dry gas. J. Nat. Gas Chem. 2009, 18, 156–160. [Google Scholar] [CrossRef]
- Ghashghaee, M. Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins. Rev. Chem. Eng. 2017, 34, 595–655. [Google Scholar] [CrossRef]
- Wei, Y.; Lei, H.; Zhu, L.; Zhang, X.; Yadavalli, G.; Liu, Y.; Yan, D. Oxygen-Containing Fuels from High Acid Water Phase Pyrolysis Bio-Oils by ZSM−5. Catal. Kinet. Mech. Stud. 2015, 8, 5898–58915. [Google Scholar]
Sample | 11–17 ppm | 18–44 ppm | Short-Chain Methyl | Branching Ratio | Short-Chain Branching | VI |
---|---|---|---|---|---|---|
Integral | Integral | Integral | (%) | |||
Oligomer product (this study) | 3.1 | 27.1 | 1.45 | 0.11 | 46.8 | 111.5 |
Conventional PAO | 4.3 | 43.4 | 1.5 | 0.10 | 35.1 | 123.7 |
Kinetic Constant | Unit | 423 K | 443 K | 483 K |
---|---|---|---|---|
Dimerization reaction: | ||||
kD,i.j | L mol s−1 | 0.0002 ± 0.000 | 0.0001 ± 0.000 | 0.1611 ± 0.003 |
KDE,A | mL mol−1 | 1.2750 ± 0.002 | 10.014 ± 0.394 | 0.0002 ± 0.000 |
KDM,A | mL mol−1 | 3.6220 ± 0.004 | - | - |
KTM,A | mL mol−1 | 102.00 ± 1.834 | 63.565 ± 0.985 | 25.218 ± 0.029 |
Trimerization reaction: | ||||
kT,i.j | L mol s−1 | 3.6272 ± 0.031 | 0.0259 ± 0.001 | 0.0159 ± 0.002 |
KDE,A | mL mol−1 | 0.5900 ± 0.003 | 0.9872 ± 0.004 | 1.0291 ± 0.003 |
KDM,A | mL mol−1 | 102.00 ± 2.941 | 0.0010 ± 0.000 | 0.0012 ± 0.000 |
KTM,A | mL mol−1 | - | 18.0646 ± 0.783 | 15.948 ± 0.894 |
Alternatives | Dimerization Reaction Equations | Trimerization Reaction Equations | Additional Assumption | |
---|---|---|---|---|
Alternative I | Alternative II | |||
Case I: All compounds can adsorb on the active sites. | - | |||
Neglect the vacant active site. | ||||
Case II: Trimers cannot adsorb on the active sites. | - | |||
Neglect the vacant active site. | ||||
Case III: Dimers cannot adsorb on the active sites. | - | |||
Neglect the vacant active site. | ||||
Case IV: Only 1-decene adsorbs on the active sites. | - | |||
Neglect the vacant active site. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echaroj, S.; Asavatesanupap, C.; Chavadej, S.; Santikunaporn, M. Kinetic Study on Microwave-Assisted Oligomerization of 1-Decene over a HY Catalyst. Catalysts 2021, 11, 1105. https://doi.org/10.3390/catal11091105
Echaroj S, Asavatesanupap C, Chavadej S, Santikunaporn M. Kinetic Study on Microwave-Assisted Oligomerization of 1-Decene over a HY Catalyst. Catalysts. 2021; 11(9):1105. https://doi.org/10.3390/catal11091105
Chicago/Turabian StyleEcharoj, Snunkhaem, Channarong Asavatesanupap, Sumaeth Chavadej, and Malee Santikunaporn. 2021. "Kinetic Study on Microwave-Assisted Oligomerization of 1-Decene over a HY Catalyst" Catalysts 11, no. 9: 1105. https://doi.org/10.3390/catal11091105
APA StyleEcharoj, S., Asavatesanupap, C., Chavadej, S., & Santikunaporn, M. (2021). Kinetic Study on Microwave-Assisted Oligomerization of 1-Decene over a HY Catalyst. Catalysts, 11(9), 1105. https://doi.org/10.3390/catal11091105