Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol
2.2. Composition of Liquid Products of Thermal Conversion of Flax Shives
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Flax Shives Samples Preparation
3.3. Thermal Conversion of Flax Shives
3.4. The Products Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, K.; Giuseppe, M. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. Int. J. Mol. Sci. 2010, 11, 4035–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef] [PubMed]
- Del Río, J.C.; Rencoret, J.; Gutiérrez, A.; Nieto, L.; Jiménez-Barbero, J.; Martínez, Á.T. Structural Characterization of Guaiacyl-rich Lignins in Flax (Linum usitatissimum) Fibers and Shives. J. Agric. Food Chem. 2011, 59, 11088–11099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev. 2018, 118, 614–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Molchanov, V.; Fomicheva, N.; Smirnova, Y.; Sidorov, A.; Matveeva, V. Development of technology for the processing of organic waste and renewable plant materials with the production of biologically active substances for agricultural purposes. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 18–24 August 2020; pp. 237–244. [Google Scholar]
- Sulman, E.M.; Lugovoy, Y.V.; Chalov, K.V.; Kosivtsov, Y.Y.; Stepacheva, A.A.; Shimanskaya, E.I. Flax shive thermocatalytic processing. AIP Conf. Proc. 2016, 1787, 030003. [Google Scholar] [CrossRef]
- Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci. 2013, 6, 994–1007. [Google Scholar] [CrossRef]
- Tekin, K.; Hao, N.; Karagöz, S.; Ragauskas, A.J. Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem 2018, 11. [Google Scholar] [CrossRef]
- Galkin, M.V.; Samec, J.S.M. Selective Route to 2-Propenyl Aryls Directly from Wood by a Tandem Organosolv and Palladium-Catalysed Transfer Hydrogenolysis. ChemSusChem 2014, 7, 2154–2158. [Google Scholar] [CrossRef]
- Van den Bosch, S.; Schutyser, W.; Vanholme, R.; Driessen, T.; Koelewijn, S.F.; Renders, T.; De Meester, B.; Huijgen, W.J.J.; Dehaen, W.; Courtin, C.M.; et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 2015, 8, 1748–1763. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zheng, M.; Wang, A.; Zhang, T. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: Simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ. Sci. 2012, 5, 6383–6390. [Google Scholar] [CrossRef]
- Yan, N.; Zhao, C.; Dyson, P.J.; Wang, C.; Liu, L.T.; Kou, Y. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 2008, 1, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Parsell, T.; Yohe, S.; Degenstein, J.; Jarrell, T.; Klein, I.; Gencer, E.; Hewetson, B.; Hurt, M.; Kim, J.I.; Choudhari, H.; et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 2015, 17, 1492–1499. [Google Scholar] [CrossRef]
- Klein, I.; Marcum, C.; Kenttämaa, H.; Abu-Omar, M.M. Mechanistic investigation of the Zn/Pd/C catalyzed cleavage and hydrodeoxygenation of lignin. Green Chem. 2016, 18, 2399–2405. [Google Scholar] [CrossRef]
- Xu, J.; Xie, X.; Wang, J.; Jiang, J. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem. 2016, 18, 3124–3138. [Google Scholar] [CrossRef]
- Chikunov, A.S.; Shashkov, M.V.; Pestunov, A.V.; Kazachenko, A.S.; Mishenko, T.I.; Taran, O.P. Hydrogenolysis of birch ethanol-lignin in supercritical ethanol over Ru and Ni catalysts bifunctional supported on oxidized carbon. J. Sib. Fed. Univ. Chem. 2018, 11, 131–150. [Google Scholar]
- Kazachenko, A.S.; Baryshnikov, S.V.; Chudina, A.I.; Malyar, Y.N.; Sychev, V.V.; Taran, O.P.; Djakovitch, L.; Kuznetsov, B.N. Hydrogenation of abies wood and ethanol-lignin by molecular hydrogen in supercritical ethanol over bifunctional RU/C catalyst. Chem. Plant Raw Mater. 2019, 2, 15–26. [Google Scholar] [CrossRef]
- Kuznetsov, B.N.; Sharypov, V.I.; Baryshnikov, S.V.; Miroshnikova, A.V.; Taran, O.P.; Yakovlev, V.A.; Lavrenov, A.V.; Djakovitch, L. Catalytic hydrogenolysis of native and organosolv lignins of aspen wood to liquid products in supercritical ethanol medium. Catal. Today 2020. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Tarabanko, V.E.; Miroshnikova, A.V.; Sychev, V.V.; Skripnikov, A.M.; Malyar, Y.N.; Mikhlin, Y.L.; Baryshnikov, S.V.; Taran, O.P. Reductive Catalytic Fractionation of Flax Shive over Ru/C Catalysts. Catalysts 2021, 11, 42. [Google Scholar] [CrossRef]
- Galkin, M.V.; Smit, A.T.; Subbotina, E.; Artemenko, K.A.; Bergquist, J.; Huijgen, W.J.J.; Samec, J.S.M. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 2016, 9, 3280–3287. [Google Scholar] [CrossRef]
- Kuznetsov, B.N.; Sharypov, V.I.; Chesnokov, N.V.; Beregovtsova, N.G.; Baryshnikov, S.V.; Lavrenov, A.V.; Vosmerikov, A.V.; Agabekov, V.E. Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinet. Catal. 2015, 56, 434–441. [Google Scholar] [CrossRef]
- Macala, G.S.; Matson, T.D.; Johnson, C.L.; Lewis, R.S.; Iretskii, A.V.; Ford, P.C. Hydrogen Transfer from Supercritical Methanol over a Solid Base Catalyst: A Model for Lignin Depolymerization. ChemSusChem 2009, 2, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Huang, X.; Zhu, J.; Boot, M.D.; Hensen, E.J.M. Catalytic Conversion of Lignin in Woody Biomass into Phenolic Monomers in Methanol/Water Mixtures without External Hydrogen. ACS Sustain. Chem. Eng. 2019, 7, 13764–13773. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Oh, S.; Hwang, H.; Cho, T.-S.; Choi, I.-G.; Choi, J.W. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere 2013, 93, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Tarabanko, V.E.; Petukhov, D.V.; Selyutin, G.E. New Mechanism for the Catalytic Oxidation of Lignin to Vanillin. Kinet. Catal. 2004, 45, 569–577. [Google Scholar] [CrossRef]
- Tarabanko, V.; Kaygorodov, K.; Vigul, D.; Tarabanko, N.; Chelbina, Y.; Smirnova, M. Influence of acid prehydrolysis on the process of wood oxidation into vanillin and pulp. J. Wood Chem. Technol. 2020, 40, 421–433. [Google Scholar] [CrossRef]
- Taran, O.; Polyanskaya, E.; Ogorodnikova, O.; Descorme, C.; Besson, M.; Parmon, V. Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized Sibunit samples. Catal. Ind. 2010, 2, 381–386. [Google Scholar] [CrossRef]
- Taran, O.P.; Descorme, C.; Polyanskaya, E.M.; Ayusheev, A.B.; Besson, M.; Parmon, V.N. Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. III: Wet air oxidation of phenol over oxidized carbon and Rr/C catalysts. Catal. Ind. 2013, 5, 164–174. [Google Scholar] [CrossRef]
- Meng, X.; Bhagia, S.; Wang, Y.; Zhou, Y.; Pu, Y.; Dunlap, J.R.; Shuai, L.; Ragauskas, A.J.; Yoo, C.G. Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind. Crops Prod. 2020, 146, 112144. [Google Scholar] [CrossRef]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Kürschner, K.; Hoffer, A. Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen A new method for the determination of cellulose in wood and pulps. Technol. Chem. Pap. Zellst. Fabr. 1929, 26, 125–129. [Google Scholar]
- Obolenskaya, A.V.; Elnitskaya, Z.P.; Leonovich, A.A. Laboratory Works on Chemistry of Wood and Cellulose; Ekologiya: Moscow, Russia, 1991; p. 320. [Google Scholar]
- Ruiz-Matute, A.I.; Hernández-Hernández, O.; Rodríguez-Sánchez, S.; Sanz, M.L.; Martínez-Castro, I. Derivatization of carbohydrates for GC and GC–MS analyses. J. Chromatogr. B 2011, 879, 1226–1240. [Google Scholar] [CrossRef] [PubMed]
Conditions | Conversion | Yield, wt.% | Hydrogenation with H2 in Ethanol [20] | |||
---|---|---|---|---|---|---|
Liquid | Solid | Methoxyphenols | Conversion | Methoxyphenols | ||
Without catalyst a | 44.5 | 19.99 | 55.53 | 2.77 | 44.1 | 1.66 |
Without catalyst b | 64.0 | 17.34 | 35.96 | 7.07 | - | - |
Ru/C a | 49.8 | 19.33 | 50.15 | 9.43 | 55.3 | 12.21 |
Ru/C b | 76.8 | 29.69 | 23.23 | 11.69 | 87.6 | 9.73 |
Conditions | Composition of a Solid Product, wt.% | Degree of Delignification, % | Cellulose Yield, wt.% | Hydrogenation with H2 in Ethanol [20] c | |||
---|---|---|---|---|---|---|---|
Hemicelluloses | Lignin | Cellulose | Degree of Delignification, % | Cellulose Yield, wt.% | |||
Without catalyst a | 14.2 | 26.2 | 59.6 | 52.1 | 65.4 | 63.3 | 55.4 |
Without catalyst b | 4.1 | 30.1 | 65.8 | 64.4 | 46.8 | - | - |
Ru/C a | 6.1 | 17.1 | 76.8 | 71.8 | 76.1 | 83.2 | 51.8 |
Ru/C b | 2.4 | 20.1 | 77.5 | 84.6 | 35.6 | 93.1 | 24.2 |
RT | Compound | Structure | Yields, wt.% Based on Lignin * | |||
---|---|---|---|---|---|---|
225 °С without Catalyst | 250 °С without Catalyst | 225 °С Ru/C | 250 °С Ru/C | |||
17.71 | Guaiacol | 0.22 | 1.38 | 0.22 (0.55) ** | 1.28 | |
21.29 | Methylguaiacol | 0.01 | 0.24 | 0.08 | 0.49 | |
23.96 | Ethylguaiacol | 0.00 | 0.44 | 0.48 | 1.21 | |
25.98 | Syringol | 0.10 | 0.59 | 0.07 | 0.55 | |
26.44 | Propylguaiacol | 0.01 | 0.36 | 1.19 (4.95) ** | 3.91 | |
28.58 | Propenylguaiacol | 0.78 | 1.19 | 4.96 (1.17) ** | 0.85 | |
30.49 | Ethylsyringol | 0.01 | 0.14 | 0.38 | 0.37 | |
32.47 | Propylsyringol | 0.01 | 0.18 | 0.09 (1.26) ** | 1.24 | |
34.51 | Propenylsyringol | 0.19 | 0.21 | 1.11 (0.06) ** | 0.00 | |
Total yield | 1.33 | 4.73 | 8.57 | 9.90 | ||
Others methoxyphenols | 1.44 | 2.29 | 0.86 | 1.79 |
No. | Sample | Mn (Da) | Mw (Da) | PD |
---|---|---|---|---|
1 | Thermal conversion of flax shives in subcritical ethanol; 225 °С; without the catalyst | 600 | 1250 | 2.09 |
2 | Thermal conversion of flax shives in supercritical ethanol; 250 °С; without the catalyst; | 540 | 1350 | 2.47 |
3 | Thermal conversion of flax shives in subcritical ethanol; 225 °С; 3% Ru/C | 510 | 1040 | 2.03 |
4 | Thermal conversion of flax shives in supercritical ethanol; 250 °С; 3% Ru/C | 500 | 1270 | 2.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazachenko, A.S.; Miroshnikova, A.V.; Tarabanko, V.E.; Skripnikov, A.M.; Malyar, Y.N.; Borovkova, V.S.; Sychev, V.V.; Taran, O.P. Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst. Catalysts 2021, 11, 970. https://doi.org/10.3390/catal11080970
Kazachenko AS, Miroshnikova AV, Tarabanko VE, Skripnikov AM, Malyar YN, Borovkova VS, Sychev VV, Taran OP. Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst. Catalysts. 2021; 11(8):970. https://doi.org/10.3390/catal11080970
Chicago/Turabian StyleKazachenko, Aleksandr S., Angelina V. Miroshnikova, Valery E. Tarabanko, Andrey M. Skripnikov, Yuriy N. Malyar, Valentina S. Borovkova, Valentin V. Sychev, and Oxana P. Taran. 2021. "Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst" Catalysts 11, no. 8: 970. https://doi.org/10.3390/catal11080970