Perovskite Zinc Titanate Photocatalysts Synthesized by the Sol–Gel Method and Their Application in the Photocatalytic Degradation of Emerging Contaminants
Abstract
:1. Introduction
2. Results
3. Experimental
3.1. Materials and Reagents
3.2. Synthesis of ZnTiO3
3.3. Characterizations
3.4. Photocatalytic AMX Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total. Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef]
- Vranakis, I.; Goniotakis, I.; Psaroulaki, A.; Sandalakis, V.; Tselentis, Y.; Gevaert, K.; Tsiotis, G. Proteome studies of bacterial antibiotic resistance mechanisms. J. Proteom. 2014, 97, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Haritash, A.K. Degradation of amoxicillin by fenton and fenton-integrated hybrid oxidation processes. J. Environ. Chem. Eng. 2019, 7, 102886. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 2003, 9, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Gozlan, I.; Rotstein, A.; Avisar, D. Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere 2013, 91, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Montanha, M.C.; dos Santos Magon, T.F.; de Souza Alcantara, C.; Simões, C.F.; Silva, S.R.B.; Kuroda, C.M.; Yamada, S.S.; de Oliveira, L.E.S.; Nasser, D.; Junior, N.N. Reduced bioavailability of oral amoxicillin tablets compared to suspensions in roux-en-y gastric bypass bariatric subjects. Br. J. Clin. Pharmacol. 2019, 85, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Son, A.; Her, N.; Zoh, K.-D.; Cho, J.; Yoon, Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem. 2015, 27, 1–11. [Google Scholar] [CrossRef]
- Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Lee, G.; Jang, M.; Jang, A.; Her, N.; Son, A.; Yoon, Y. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review. Chem. Eng. J. 2017, 327, 629–647. [Google Scholar] [CrossRef]
- Singh, P.; Raizada, P.; Pathania, D.; Sharma, G.; Sharma, P. Microwave induced koh activation of guava peel carbon as an adsorbent for congo red dye removal from aqueous phase. Indian J. Chem. Technol. 2013, 20, 305–311. [Google Scholar]
- Pare, B.; Singh, P.; Jonnalgadda, S. Degradation and mineralization of victoria blue b dye in a slurry photoreactor using advanced oxidation process. J. Sci. Ind. Res. 2009, 68, 724–729. [Google Scholar]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total. Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Souza, F.S.; da Silva, V.V.; Rosin, C.K.; Hainzenreder, L.; Arenzon, A.; Féris, L.A. Comparison of different advanced oxidation processes for the removal of amoxicillin in aqueous solution. Environ. Technol. 2018, 39, 549–557. [Google Scholar] [CrossRef]
- Huang, C.-W.; Sin, W.-C.; Nguyen, V.-H.; Wu, Y.-C.; Chen, W.-Y.; Chien, A.C. Solvothermal synthesis of mesoporous tio2 using sodium dodecyl sulfate for photocatalytic degradation of methylene blue. Top. Catal. 2020, 63, 1121–1130. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F.J. Recent advances in nano-fenton catalytic degradation of emerging pharmaceutical contaminants. J. Mol. Liq. 2019, 290, 111177. [Google Scholar] [CrossRef]
- Liang, S.-X.; Wang, X.; Zhang, W.; Liu, Y.-J.; Wang, W.; Zhang, L.-C. Selective laser melting manufactured porous fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Today 2020, 19, 100543. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Lin, P.; Cui, Z.; Chu, C.; Shen, B. Investigation of fepc amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue. J. Mater. Chem. A 2018, 6, 10686–10699. [Google Scholar] [CrossRef]
- Jia, Z.; Kang, J.; Zhang, W.; Wang, W.; Yang, C.; Sun, H.; Habibi, D.; Zhang, L. Surface aging behaviour of fe-based amorphous alloys as catalysts during heterogeneous photo fenton-like process for water treatment. Appl. Catal. B Environ. 2017, 204, 537–547. [Google Scholar] [CrossRef]
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Changotra, R.; Rajput, H.; Guin, J.P.; Dhir, A. Comparative assessment of application of ionizing radiations in degradation of amoxicillin trihydrate (amt) in aqueous solutions. Chem. Eng. J. 2020, 421, 127847. [Google Scholar] [CrossRef]
- Huang, C.W.; Wu, M.C. Photocatalytic degradation of methylene blue by uv-assistant tio2 and natural sericite composites. J. Chem. Technol. Biotechnol. 2020, 95, 2715–2722. [Google Scholar]
- Thi, L.-A.P.; Panchangam, S.C.; Do, H.-T.; Nguyen, V.-H. Chapter 17—Prospects and Challenges of Photocatalysis for Degradation and Mineralization of Antiviral Drugs. In Nanostructured Photocatalysts; Nguyen, V.-H., Vo, D.-V.N., Nanda, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 489–517. [Google Scholar]
- Nguyen, V.-H.; Tran, Q.B.; Nguyen, X.C.; Hai, L.T.; Ho, T.T.T.; Shokouhimehr, M.; Vo, D.-V.N.; Lam, S.S.; Nguyen, H.P.; Hoang, C.T.; et al. Submerged photocatalytic membrane reactor with suspended and immobilized n-doped tio2 under visible irradiation for diclofenac removal from wastewater. Process. Saf. Environ. Prot. 2020, 142, 229–237. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Phan Thi, L.-A.; Chandana, P.S.; Do, H.-T.; Pham, T.-H.; Lee, T.; Nguyen, T.D.; Le Phuoc, C.; Huong, P.T. The degradation of paraben preservatives: Recent progress and sustainable approaches toward photocatalysis. Chemosphere 2021, 276, 130163. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Smith, S.M.; Wantala, K.; Kajitvichyanukul, P. Photocatalytic remediation of persistent organic pollutants (pops): A review. Arab. J. Chem. 2020, 13, 8309–8337. [Google Scholar] [CrossRef]
- Lu, K.-T.; Nguyen, V.-H.; Yu, Y.-H.; Yu, C.-C.; Wu, J.C.S.; Chang, L.-M.; Lin, A.Y.-C. An internal-illuminated monolith photoreactor towards efficient photocatalytic degradation of ppb-level isopropyl alcohol. Chem. Eng. J. 2016, 296, 11–18. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Phan Thi, L.-A.; Van Le, Q.; Singh, P.; Raizada, P.; Kajitvichyanukul, P. Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons (pahs) in water, soil and other sources. Chemosphere 2020, 260, 127529. [Google Scholar] [CrossRef]
- Do, H.-T.; Phan Thi, L.-A.; Dao Nguyen, N.H.; Huang, C.-W.; Le, Q.V.; Nguyen, V.-H. Tailoring photocatalysts and elucidating mechanisms of photocatalytic degradation of perfluorocarboxylic acids (pfcas) in water: A comparative overview. J. Chem. Technol. Biotechnol. 2020, 95, 2569–2578. [Google Scholar] [CrossRef]
- Patial, S.; Raizada, P.; Hasija, V.; Singh, P.; Thakur, V.K.; Nguyen, V.H. Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants. Mater. Today Energy 2021, 19, 100589. [Google Scholar] [CrossRef]
- Dutta, V.; Sharma, S.; Raizada, P.; Khan, A.A.P.; Asiri, A.M.; Nadda, A.; Singh, P.; Van Le, Q.; Huang, C.-W.; Nguyen, D.L.T.; et al. Recent advances and emerging trends in (bio)2co3 based photocatalysts for environmental remediation: A review. Surf. Interfaces 2021, 25, 101273. [Google Scholar] [CrossRef]
- Dimitrakopoulou, D.; Rethemiotaki, I.; Frontistis, Z.; Xekoukoulotakis, N.P.; Venieri, D.; Mantzavinos, D. Degradation, mineralization and antibiotic inactivation of amoxicillin by uv-a/tio2 photocatalysis. J. Environ. Manag. 2012, 98, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Bergamonti, L.; Bergonzi, C.; Graiff, C.; Lottici, P.P.; Bettini, R.; Elviri, L. 3d printed chitosan scaffolds: A new tio2 support for the photocatalytic degradation of amoxicillin in water. Water Res. 2019, 163, 114841. [Google Scholar] [CrossRef]
- Ramandi, S.; Entezari, M.H.; Ghows, N. Sono-synthesis of novel magnetic nanocomposite (ba-α-bi2o3-γ-fe2o3) for the solar mineralization of amoxicillin in an aqueous solution. Phys. Chem. Res. 2017, 5, 253–268. [Google Scholar]
- Hsiao, C.-Y.; Hung, C.; Kwon, E.; Huang, C.-W.; Huang, C.-F.; Lin, K.-Y.A. Electrospun nanoscale iron oxide-decorated carbon fiber as an efficient heterogeneous catalyst for activating percarbonate to degrade azorubin s in water. J. Water Process. Eng. 2020, 40, 101838. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V.N.; Nguyen, V.H.; Van Tran, T.; Nong, L.X.; Nguyen, T.T.; Bach, L.-G.; Abdullah, B.; et al. Bivo4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environ. Chem. Lett. 2020, 18, 1779–1801. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the uv/zno photocatalytic process. J. Hazard. Mater. 2010, 173, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Chatterjee, S.; Basnet, P.; Mukherjee, J. Zno based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions–a contemporary review. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100386. [Google Scholar] [CrossRef]
- Leong, K.H.; Gan, B.L.; Ibrahim, S.; Saravanan, P. Synthesis of surface plasmon resonance (spr) triggered ag/tio2 photocatalyst for degradation of endocrine disturbing compounds. Appl. Surf. Sci. 2014, 319, 128–135. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Kockler, J.; Motti, C.A.; Glass, B.D.; Oelgemöller, M. Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl. Catal. B Environ. 2015, 166–167, 45–55. [Google Scholar] [CrossRef]
- Belaissa, Y.; Nibou, D.; Assadi, A.A.; Bellal, B.; Trari, M. A new hetero-junction p-cuo/n-zno for the removal of amoxicillin by photocatalysis under solar irradiation. J. Taiwan Inst. Chem. Eng. 2016, 68, 254–265. [Google Scholar] [CrossRef]
- Yang, C.; You, X.; Cheng, J.; Zheng, H.; Chen, Y. A novel visible-light-driven in-based mof/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl. Catal. B Environ. 2017, 200, 673–680. [Google Scholar] [CrossRef]
- Dou, M.; Wang, J.; Gao, B.; Xu, C.; Yang, F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-c3n4: Mechanism, degradation pathway and dft calculation. Chem. Eng. J. 2019, 123134. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Magnetic fluorinated mesoporous g-c3n4 for photocatalytic degradation of amoxicillin: Transformation mechanism and toxicity assessment. Appl. Catal. B Environ. 2019, 242, 337–348. [Google Scholar] [CrossRef]
- Haddadou, N.; Bensemma, N.; Rekhila, G.; Trari, M.; Taïbi, K. Photoelectrochemical investigations in lead-free ba (ti0.950sc0.025nb0.025)o3 ferroelectric ceramics. Application to amoxicillin photodegradation. J. Photochem. Photobiol. A Chem. 2018, 358, 294–299. [Google Scholar] [CrossRef]
- Kong, J.-Z.; Li, A.-D.; Zhai, H.-F.; Li, H.; Yan, Q.-Y.; Ma, J.; Wu, D. Preparation, characterization and photocatalytic properties of zntio3 powders. J. Hazard. Mater. 2009, 171, 918–923. [Google Scholar] [CrossRef]
- Ozturk, B.; Soylu, G.S.P. Promoting role of transition metal oxide on zntio3–tio2 nanocomposites for the photocatalytic activity under solar light irradiation. Ceram. Int. 2016, 42, 11184–11192. [Google Scholar] [CrossRef]
- Cai, Z.; Li, J.; Wang, Y. Fabrication of zinc titanate nanofibers by electrospinning technique. J. Alloys Compd. 2010, 489, 167–169. [Google Scholar] [CrossRef]
- Hou, L.; Hou, Y.-D.; Zhu, M.-K.; Tang, J.; Liu, J.-B.; Wang, H.; Yan, H. Formation and transformation of zntio3 prepared by sol–gel process. Mater. Lett. 2005, 59, 197–200. [Google Scholar] [CrossRef]
- Lokesh, B.; Kaleemulla, S.; Rao, N.M. Synthesis and characterization of zinc titanates by solid state reaction. Int. J. Chem. Tech. Res. 2014, 6, 1929–1932. [Google Scholar]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (pvp) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N.; Zamanian, A. Synthesis of cubic and hexagonal zntio3 as catalyst support in steam reforming of methanol: Study of physical and chemical properties of copper catalysts on the h2 and co selectivity and coke formation. Int. J. Hydrogen Energy 2020, 45, 9484–9495. [Google Scholar] [CrossRef]
- Li, J.; Cui, H.; Mu, D.; Liu, Y.; Guan, T.; Xia, Z.; Jiang, L.; Zuo, J.; Tan, C.; You, H. Synthesis and characterization of rgo decorated cubic zntio 3 rods for solar light-induced photodegradation of rhodamine b. New J. Chem. 2019, 43, 3374–3382. [Google Scholar] [CrossRef]
- Chi, Y.; Yuan, Q.; Hou, S.; Zhao, Z. Synthesis and characterization of mesoporous zntio3 rods via a polyvinylpyrrolidone assisted sol–gel method. Ceram. Int. 2016, 42, 5094–5099. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Chang, Y.-H.; Chen, I.-G.; Chen, G.-J.; Chai, Y.-L. Synthesis and characterization of zinc titanate nano-crystal powders by sol–gel technique. J. Cryst. Growth 2002, 243, 319–326. [Google Scholar] [CrossRef]
- Luo, Z.; Li, H.; Xia, J.; Zhu, W.; Guo, J.; Zhang, B. Microwave-assisted synthesis of barium tungstate nanosheets and nanobelts by using polymer pvp micelle as templates. Mater. Lett. 2007, 61, 1845–1848. [Google Scholar] [CrossRef]
- Kuchi, C.; Harish, G.S.; Reddy, P.S. Effect of polymer concentration, needle diameter and annealing temperature on tio2-pvp composite nanofibers synthesized by electrospinning technique. Ceram. Int. 2018, 44, 5266–5272. [Google Scholar] [CrossRef]
- Al-Hajji, L.A.; Ismail, A.A.; Al-Hazza, A.; Ahmed, S.A.; Alsaidi, M.; Almutawa, F.; Bumajdad, A. Impact of calcination of hydrothermally synthesized tio2 nanowires on their photocatalytic efficiency. J. Mol. Struct. 2020, 1200, 127153. [Google Scholar] [CrossRef]
- Yurdakal, S.; Garlisi, C.; Özcan, L.; Bellardita, M.; Palmisano, G. Chapter 4—(Photo)catalyst Characterization Techniques: Adsorption Isotherms and Bet, Sem, Ftir, Uv–Vis, Photoluminescence, and Electrochemical Characterizations. In Heterogeneous Photocatalysis; Marcì, G., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 87–152. [Google Scholar]
- Pal, N.; Paul, M.; Bhaumik, A. New mesoporous perovskite zntio3 and its excellent catalytic activity in liquid phase organic transformations. Appl. Catal. A Gen. 2011, 393, 153–160. [Google Scholar] [CrossRef]
- Murphy, A.J.S.E.M.; Cells, S. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 2007, 91, 1326–1337. [Google Scholar] [CrossRef]
- Le, M.-V.; Vo, N.-Q.-D.; Le, Q.-C.; Tran, V.A.; Phan, T.; Huang, C.-W.; Nguyen, V.-H. Manipulating the structure and characterization of sr1− xlaxtio3 nanocubes toward the photodegradation of 2-naphthol under artificial solar light. Catalysts 2021, 11, 564. [Google Scholar] [CrossRef]
- Aksu Demirezen, D.; Yıldız, Y.Ş.; Demirezen Yılmaz, D. Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100219. [Google Scholar] [CrossRef]
ZnTiO3-500°C | ZnTiO3-600°C | ZnTiO3-700°C-N1500-P5 | ZnTiO3-800°C | ZnTiO3-N750 | ZnTiO3-N3000 | ZnTiO3-P3 | |
---|---|---|---|---|---|---|---|
Element | Atomic % | ||||||
O | 75.02 | 76.37 | 77.27 | 14.60 | 65.92 | 78.81 | 75.58 |
Zn | 12.34 | 11.59 | 11.11 | 48.74 | 15.25 | 10.93 | 11.65 |
Ti | 12.64 | 12.04 | 11.62 | 36.66 | 18.83 | 10.26 | 12.77 |
Dimension | Particle size (μm) | ||||||
length | 1~4 | 1~3 | 3~6 | 1~2 | |||
size | 0.5~0.8 | 0.5~0.8 | 0.8~1.2 | ~0.5 |
Specific Surface Area | ZnTiO3-500 °C | ZnTiO3-600 °C | ZnTiO3-700 °C-N1500-P5 | ZnTiO3-800 °C | ZnTiO3-N750 | ZnTiO3-N3000 | ZnTiO3-P3 |
---|---|---|---|---|---|---|---|
BET (m2/g) | 42.0 | 10.0 | 6.7 | 0.2 | 6.0 | 5.4 | 6.1 |
Catalysts | Pollutant | k(min−1) | R2 |
---|---|---|---|
ZnTiO3-500 °C | AMX | 0.0030 | 0.9036 |
ZnTiO3-600 °C | AMX | 0.0038 | 0.9340 |
ZnTiO3-800 °C | AMX | 0.0028 | 0.8784 |
ZnTiO3-700 °C | AMX | 0.0049 | 0.9401 |
TC | 0.0181 | 0.9784 | |
MB | 0.0048 | 0.9996 | |
MO | 0.0031 | 0.9979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-Y.; Wang, C.-P.; Chen, P.-C.; Lin, K.-Y.A.; Ghosh, S.; Huang, C.-W.; Nguyen, V.-H. Perovskite Zinc Titanate Photocatalysts Synthesized by the Sol–Gel Method and Their Application in the Photocatalytic Degradation of Emerging Contaminants. Catalysts 2021, 11, 854. https://doi.org/10.3390/catal11070854
Chen W-Y, Wang C-P, Chen P-C, Lin K-YA, Ghosh S, Huang C-W, Nguyen V-H. Perovskite Zinc Titanate Photocatalysts Synthesized by the Sol–Gel Method and Their Application in the Photocatalytic Degradation of Emerging Contaminants. Catalysts. 2021; 11(7):854. https://doi.org/10.3390/catal11070854
Chicago/Turabian StyleChen, Wei-Yu, Ching-Ping Wang, Po-Chou Chen, Kun-Yi Andrew Lin, Surajit Ghosh, Chao-Wei Huang, and Van-Huy Nguyen. 2021. "Perovskite Zinc Titanate Photocatalysts Synthesized by the Sol–Gel Method and Their Application in the Photocatalytic Degradation of Emerging Contaminants" Catalysts 11, no. 7: 854. https://doi.org/10.3390/catal11070854
APA StyleChen, W.-Y., Wang, C.-P., Chen, P.-C., Lin, K.-Y. A., Ghosh, S., Huang, C.-W., & Nguyen, V.-H. (2021). Perovskite Zinc Titanate Photocatalysts Synthesized by the Sol–Gel Method and Their Application in the Photocatalytic Degradation of Emerging Contaminants. Catalysts, 11(7), 854. https://doi.org/10.3390/catal11070854