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Figure S1. XRD patterns of ZnTiO3 photocatalysts (synthesized by adding 5 g PVP) 

under the calcination temperature of 700 °C with various amounts of NH4OH addition 

(750, 1500, and 3000 μL). 

 



 

Figure S2. The XRD patterns of ZnTiO3 photocatalysts prepared by adding 3g and 5 g 

PVP under the calcination temperature of 700 °C with NH4OH addition of 1500 μL. 

 



 

Figure S3. FTIR spectra of various ZnTiO3 prepared by various conditions 

 

 

Figure S4. (a)-(d) and (d)-(f) the SEM images at the magnification of 10,000× and 

30,000× of ZnTiO3-N750, ZnTiO3-N1500, and ZnTiO3-3000  

 



 

Figure S5. the SEM images at the magnification of 30,000× of (a) ZnTiO3-P3 and (b) 

ZnTiO3-P5.  

 

 

 

Figure S6. N2 adsorption-desorption isotherms of ZnTiO3 prepared various NH4OH 

and PVP modification. 



 

Figure S7. UV-Vis result of ZnTiO3 prepared by various amounts of NH4OH and PVP 

modification. 

 

 

 

 



 

Figure S8. The changes of C/CL0 with reaction time (a) for various amounts of 

NH4OH addition and (b) for various amounts of PVP addition. 

 

 

Figure S9. The changes of C/C0 with reaction time by using P25 and ZnTiO3-700°C. 

  



Table S1. the comparison of activities over different photocatalysts to degrade AMX. 

Photocatalysts Light  Dosage AMX 

conc. 

Results Ref. 

(Year) 

FeSO4൉7H2O + H2O2 672 W/m2 UV 

light 

FeSO4൉7H2O 

(30 mg/L)/  

10 mg/L (1) H2O2 

(375 mg/L) 

was 

neccesary.  

(2) fully 

degrade 

AMX in 12 

min 

irradiation 

via photo-

Fenton 

[1] 

(2019) 

Magnetic fluorinated 

mesoporous  

g-C3N4 

UV light: low-

pressure lamp 

for (maximum 

emission 

250nm); 

Visible light: 

500 W halogen 

lamp with a 

UV cutoff 

filter 

(>400 nm) 

 

1 g/L 91.4 

mg/L 

(1) UVC lamp: 

AMX was 

degraded 

by 

75%~90% 

in 120 min 

irradiation. 

(2) Visible 

light: AMX 

was 

degraded 

by 30% in 

120 min 

irradiation. 

[2] 

(2019) 

graphite carbon nitride 

(g-C3N4) 

300 W xenon 

lamp (with 

filter > 420 nm) 

0.1 g/L 1, 5, 10 

mg/L 

AMX was 

degraded by 

99%, 69%, 40% 

for AMX 

solution of 1, 5, 

[3] 

(2019) 



10 mg/L, 

respectively, in 

60 min 

irradiation. 

Ba 

(Ti0.950Sc0.025Nb0.025)O3 

average solar 

flux of 

∼1030 mW/ 

cm2 

0.5 g/L 50 mg/L AMX was 

degraded by 

52.8% in 210 

min irradiation. 

[4] 

(2018) 

(1) GrO 

(2) GrO + MIL-

68(In)-NH2 

(3) MIL-68(In)-NH2 

(4) MIL-68(In)-NH2 / 

GrO 

300 W Xe 

lamp (with 

filter > 420 nm) 

0.6 g/L 20 mg/L (1) GrO: 20% 

(2) GrO+ 

MIL-

68(In)-

NH2: 40%  

(3) MIL-

68(In)-

NH2: 60% 

(4) MIL-

68(In)-

NH2/GrO: 

90%  

The degradation 

was achieved in 

210 min 

irradiation. 

[5] 

(2017) 

hetero-junction p-

CuO/n-ZnO 

(1) sunlight 

irradiation 

(109 

mW/cm2) 

 

(2) 200 W 

tungsten 

lamp 

0.5 g/L 50 mg/L (1) sunlight 

irradiation 

(109 

mW/cm2): 

90% 

(2) 200 W 

tungsten 

lamp: 70% 

[6] 

(2016) 



Above-

mentioned 

degradation was 

achieved in 240 

min irradation. 

TiO2/zeolite 

(1) acid treatmented & 

300 °C 

(2) acid-alkali 

treatmented & 300 

°C 

(3) acid-alkali 

treatmented & 450 

°C 

47W Hg-lamp 

(cut-off 

wavelength 

≤290 nm) 

2 g/L 30 mg/L (1) acid 

treatmented 

& 300 °C: 

61% 

(2) acid-alkali 

treatmented 

& 300 °C: 

88% 

(3) acid-alkali 

treatmented 

& 450 °C: 

72% 

The degradation 

was achieved in 

240 min 

irradiation. 

[7] 

(2015) 

(SPR)-Ag/TiO2 500 W 

tungsten-

halogen lamps 

with high-pass 

UV filter 

1 g/L 20 mg/L 0wt%, 0.5wt%, 

1wt%, 3wt%, 

5wt% Ag/TiO2 

degraded AMX 

by 27.9%, 

28.7%, 57.7%, 

63.5%, 61.1% in 

300 min 

irradiation.  

[8] 

(2014) 



TiO2 (P25) 9 W UV-A 

(predominantly 

at 350–400 

nm) 

0.5 g/L 

 

2.5–30 

mg/L  

AMX was fully 

degraded in 45 

min 

[9] 

(2012) 

ZnO 6 W UV lamp 

(emitting 

radiation at 

365 nm) 

0.5 g/L 104 

mg/L 

(1) pH=5: 59% 

(2) pH=8: 72% 

(3) pH=11, 

100% 

The degradation 

was achieved in 

120 min 

irradiation. 

[10] 

(2010) 

ZnTiO3-700°C UV LEDs (8W 

ൈ4, within 

280~320 nm) 

0.5 g/L 10 mg/L AMX was 

degraded by 

63.8% in 180 

min irradiation 

This 

study 
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