Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance
2.2. Structural and Textural Properties of Samples
2.3. Reaction Mechanism
2.3.1. Adsorption of CO2 after Adsorption of Methanol
2.3.2. Adsorption of Methanol after Adsorption of CO2
2.3.3. Co-Adsorption of Methanol and CO2
3. Experimental Section
3.1. Catalyst Preparation
3.1.1. Synthesis of SBA-15
3.1.2. Synthesis of Zr-Incorporated SBA-15
3.1.3. Synthesis of ZrO2-Grafted SBA-15
3.2. Physical Characterization
3.3. DMC Synthesis from Methanol and CO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Delledonne, D.; Rivetti, F.; Romano, U. Developments in the production and application of dimethylcarbonate. Appl. Catal. A Gen. 2001, 221, 241–251. [Google Scholar] [CrossRef]
- An, H.L.; Zhang, G.J.; Zhao, X.Q.; Wang, Y.J. Preparation of highly stable Ca-Zn-Al oxide catalyst and its catalytic performance for one-pot synthesis of dimethyl carbonate. Catal. Today 2018, 316, 185–192. [Google Scholar] [CrossRef]
- Su, D.S.; Thomas, A. Editorial: Nanochemical Concepts for a Sustainable Energy Supply. ChemSusChem 2010, 3, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.W.; Subramaniam, B.; Chaudhari, R.V. Kinetic Study of CaO-Catalyzed Transesterification of Cyclic Carbonates with Methanol. Ind. Eng. Chem. Res. 2018, 57, 14977–14987. [Google Scholar] [CrossRef]
- Granados, M.L.; Alonso, D.M.; Sádaba, I.; Mariscal, R.; Ocón, P. Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO. Appl. Catal. B Environ. 2009, 89, 265–272. [Google Scholar] [CrossRef]
- Huang, S.Y.; Yan, B.; Wang, S.P.; Ma, X.B. Recent advances in dialkyl carbonates synthesis and applications. Chem. Soc. Rev. 2015, 44, 3079–3116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.S.; Han, Y.Z.; Sun, Y.H. Novel reaction route for dimethyl carbonate synthesis from CO2 and methanol. Fuel Process. Technol. 2000, 62, 187–194. [Google Scholar] [CrossRef]
- Sakakura, T.; Choi, J.C.; Saito, Y.; Sako, T. Synthesis of dimethyl carbonate from carbon dioxide: Catalysis and mechanism. Polyhedron 2000, 19, 573–576. [Google Scholar] [CrossRef]
- Cai, Q.H.; Lu, B.; Guo, L.J.; Shan, Y.K. Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal. Commun. 2009, 10, 605–609. [Google Scholar] [CrossRef]
- Fang, S.N.; Fujimoto, K. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Appl. Catal. A Gen. 1996, 142, L1–L3. [Google Scholar] [CrossRef]
- Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J. Catal. 2014, 318, 95–107. [Google Scholar] [CrossRef]
- Honda, M.; Tamura, M.; Nakagawa, Y.; Sonehara, S.; Suzuki, K.; Fujimoto, K.I.; Tomishige, K. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2 cyanopyridine. ChemSusChem 2013, 6, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Bansode, A.; Urakawa, A. Continuous DMC Synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal. 2014, 4, 3877–3880. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.P.; Zhao, L.F.; Wang, W.; Zhao, Y.J.; Zhang, G.J.; Ma, X.B.; Gong, J.L. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale 2013, 5, 5582–5588. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Arai, Y.; Kado, S.; Kunimori, K.; Tomishige, K. Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal. Today 2006, 115, 95–101. [Google Scholar] [CrossRef]
- Honda, M.; Suzuki, A.; Noorjahan, B.; Fujimoto, K.-I.; Suzuki, K.; Tomishige, K. Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chem. Commun. 2009, 4596, 4596–4598. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Kuno, S.; Begum, N.; Fujimoto, K.-L.; Suzuki, K.; Nakagawa, Y.; Tomishige, K. Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Appl. Catal. A Gen. 2010, 384, 165–170. [Google Scholar] [CrossRef]
- Honda, M.; Kuno, S.; Sonehara, S.; Fujimoto, K.-I.; Suzuki, K.; Nakagawa, Y.; Tomishige, K. Tandem Carboxylation-Hydration Reaction System from Methanol, CO2 and Benzonitrile to Dimethyl Carbonate and Benzamide Catalyzed by CeO2. ChemCatChem 2011, 3, 365–370. [Google Scholar] [CrossRef]
- Santos, B.A.V.; Pereira, C.S.M.; Silva, V.M.T.M.; Loureiro, J.M.; Rodrigues, A.E. Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. Appl. Catal. A Gen. 2013, 455, 219–226. [Google Scholar] [CrossRef]
- Ikeda, Y.; Asadullah, M.; Fujimoto, K.; Tomishige, K. Structure of the Active Sites on H3PO4/ZrO2 Catalysts for Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide. J. Phys. Chem. B 2001, 105, 10653–10658. [Google Scholar] [CrossRef]
- Ikeda, Y.; Sakaihori, T.; Tomishige, K.; Fujimoto, K. Promoting effect of phosphoric acid on zirconia catalysts in selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal. Lett. 2000, 66, 59–62. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Pastore, C.; Angelini, A.; Aresta, B.; Pápai, I. Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism. J. Catal. 2010, 269, 44–52. [Google Scholar] [CrossRef]
- Tomishige, K.; Furusawa, Y.; Ikeda, Y.; Asadullah, M.; Fujimoto, K. CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal. Lett. 2001, 76, 71–74. [Google Scholar] [CrossRef]
- Kumar, P.; Srivastava, V.-C.; Mishra, I.-M. Synthesis and characterization of Ce–La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate. Catal. Commun. 2015, 60, 27–31. [Google Scholar] [CrossRef]
- Kumar, P.; Kaur, R.; Verma, S.; Srivastava, V.-C.; Mishra, I.-M. The preparation and efficacy of SrO/CeO2 catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate. Fuel 2018, 220, 706–716. [Google Scholar] [CrossRef]
- Tomishige, K.; Kunimori, K. Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: Effect of H2O removal from the reaction system. Appl. Catal. A Gen. 2002, 237, 103–109. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, S.; Jung, J.C.; Song, I.K. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over H3PW12O40/CexZr1−xO2 catalysts: Effect of acidity of the catalysts. Korean J. Chem. Eng. 2011, 28, 1518–1522. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Liu, Z.W.; Lu, J.; Liu, Z.T. Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol over CexZr1−xO2 and [EMIM]Br/Ce0.5Zr0.5O2. Ind. Eng. Chem. Res. 2011, 50, 1981–1988. [Google Scholar] [CrossRef]
- Saada, R.; Kellici, S.; Heil, T.; Morgan, D.; Saha, B. Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst. Appl. Catal. B Environ. 2015, 168–169, 353–362. [Google Scholar] [CrossRef]
- Li, A.X.; Pu, Y.F.; Li, F.; Luo, J.; Zhao, N.; Xiao, F.K. Synthesis of dimethyl carbonate from methanol and CO2 over Fe–Zr mixed oxides. J. CO2 Util. 2017, 19, 33–39. [Google Scholar] [CrossRef]
- Wu, X.-L.; Xiao, M.; Meng, Y.-Z.; Lu, Y.-X. Direct synthesis of dimethyl carbonate on H3PO4 modified V2O5. J. Mol. Catal. A Chem. 2005, 238, 158–162. [Google Scholar] [CrossRef]
- Hou, Z.S.; Han, B.X.; Liu, Z.M.; Jiang, T.; Yang, G.Y. Synthesis of dimethyl carbonate using CO2 and methanol: Enhancing the conversion by controlling the phase behavior. Green Chem. 2002, 4, 467–471. [Google Scholar] [CrossRef]
- Choi, J.C.; He, L.N.; Yasuda, H.; Sakakura, T. Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chem. 2002, 4, 230–234. [Google Scholar] [CrossRef]
- Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. Rev. 2007, 107, 2365–2387. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.T.; Bell, A.T. An in Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Zirconia. J. Catal. 2001, 204, 339–347. [Google Scholar] [CrossRef]
- Jung, K.T.; Bell, A.T. Effects of catalyst phase structure on the elementary processes involved in the synthesis of dimethyl carbonate from methanol and carbon dioxide over zirconia. Top. Catal. 2002, 20, 97–105. [Google Scholar] [CrossRef]
- Tomishige, K.; Ikeda, Y.; Sakaihori, T.; Fujimoto, K. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J. Catal. 2000, 192, 355–362. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lee, J.F.; Cheng, S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15. J. Catal. 2010, 270, 196–205. [Google Scholar] [CrossRef]
- Chen, S.Y.; Jang, L.Y.; Cheng, S. Synthesis of Zr-Incorporated SBA-15 Mesoporous Materials in a Self-generated Acidic Environment. Chem. Mater. 2004, 16, 4174–4180. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Luengnaruemitchai, A.; Chaisuwan, T.; Chollacoop, N.; Chen, S.-Y.; Yoshimura, Y. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption. Microporous Mesoporous Mater. 2017, 253, 18–28. [Google Scholar] [CrossRef]
- Morales, G.; Osatiashtiani, A.; Herna’ndez, B.; Iglesias, J.; Melero, J.A.; Paniagua, M.; Brown, D.R.; Granollers, M.; Lee, A.F.; Wilson, K. Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chem. Commun. 2014, 50, 11742–11745. [Google Scholar] [CrossRef] [Green Version]
- Osatiashtiani, A.; Lee, A.F.; Granollers, M.; Brown, D.R.; Olivi, L.; Morales, G.; Melero, J.A.; Wilson, K. Hydrothermally Stable, Conformal, Sulfated Zirconia Monolayer Catalysts for Glucose Conversion to 5-HMF. ACS Catal. 2015, 5, 4345–4352. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, Y.; Pan, J.M.; Liu, M.; Jin, P.; Yan, Y.S. Synthesis and evaluation of acid-base bi-functionalized SBA-15 catalyst for biomass energy conversation. Chem. Eng. J. 2017, 313, 1593–1606. [Google Scholar] [CrossRef]
- Pu, Y.F.; Xuan, K.; Wang, F.; Li, A.X.; Zhao, N.; Xiao, F.K. Synthesis of dimethyl carbonate from CO2 and methanol over a hydrophobic Ce/SBA-15 catalyst. RSC Adv. 2018, 8, 27216–27226. [Google Scholar] [CrossRef] [Green Version]
- Moschetta, E.G.; Brunelli, N.; Jones, C.W. Reaction-dependent heteroatom modification of acid–base catalytic cooperativity in aminosilica materials. Appl. Catal. A Gen. 2015, 504, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Xuan, K.; Pu, Y.F.; Li, F.; Li, A.X.; Luo, J.; Li, L.; Wang, F.; Zhao, N.; Xiao, F.K. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. J. CO2 Util. 2018, 27, 272–282. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Huo, Q.S.; Feng, J.L.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Fan, X.Q.; Li, J.M.; Zhao, Z.; Wei, Y.C.; Liu, J.; Duan, A.J.; Jiang, G.Y. Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis. Catal. Sci. Technol. 2015, 5, 339–350. [Google Scholar] [CrossRef]
- Sabbaghi, A.; Lam, F.L.Y.; Hu, X.J. Zr-SBA-15 supported Ni catalysts for lean NOx reduction. J. Mol. Catal. A Chem. 2015, 409, 69–78. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Zong, E.M.; Wan, H.Q.; Xu, Z.Y.; Zheng, S.R.; Zhu, D.Q. Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal. Microporous Mesoporous Mater. 2012, 155, 192–200. [Google Scholar] [CrossRef]
- Chen, W.K.; Tseng, H.H.; Wei, M.C.; Su, E.C.; Chiu, I.C. Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: Effect of zirconium content. Int. J. Hydrogen Energy 2014, 39, 19555–19562. [Google Scholar] [CrossRef]
- Iglesias, J.; Melero, J.A.; Bautista, L.F.; Morales, G.; Sánchez-Vázquez, R.; Andreola, M.T.; Lizarraga-Fernández, A. Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil. Catal. Today 2011, 167, 46–55. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, H.; Han, J.Y.; Song, Z.Q. Multifunctional mesoporous materials with acid–base frameworks and ordered channels filled with ionic liquid: Synthesis, characterization and catalytic performance of Ti–Zr-SBA-15-IL. Appl. Surf. Sci. 2012, 258, 6158–6168. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Wu, Y.L.; Zheng, M.; Zhang, C.; Yang, M.D.; Cao, G.P. Production of mesoporous materials with high hydrothermal stability by doping metal heteroatoms. Microporous Mesoporous Mater. 2016, 224, 420–425. [Google Scholar] [CrossRef]
- Sabbaghi, A.; Lam, F.L.Y.; Hu, X.J. High Zr-loaded SBA-15 cobalt catalyst for efficient NOx reduction in lean-burn exhaust. Appl. Catal. A Gen. 2015, 508, 25–36. [Google Scholar] [CrossRef]
- Jung, K.T.; Bell, A.T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. J. Mol. Catal. A Chem. 2000, 163, 27–42. [Google Scholar] [CrossRef]
- Fisher, I.A.; Bell, A.T. In-Situ Infrared Study of Methanol Synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J. Catal. 1997, 172, 222–237. [Google Scholar] [CrossRef]
- Fisher, I.A.; Bell, A.T. A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2. J. Catal. 1999, 184, 357–376. [Google Scholar] [CrossRef]
- Hertl, W. Surface Chemistry of Zirconia Polymorphs. Langmuir 1989, 5, 96–100. [Google Scholar] [CrossRef]
- Guglielminotti, E. Infrared Study of Syngas Adsorption on Zirconia. Langmuir 1990, 6, 1455–1460. [Google Scholar] [CrossRef]
- Weigel, J.; Koeppel, R.A.; Baiker, A.; Wokaun, A. Surface Species in CO and CO2 Hydrogenation over Copper/Zirconia: On the Methanol Synthesis Mechanism. Langmuir 1996, 12, 5319–5329. [Google Scholar] [CrossRef]
- Ouyang, F.; Kondo, J.N.; Maruya, K.I.; Domen, K. Site Conversion of Methoxy Species on ZrO2. J. Phys. Chem. B 1997, 101, 4867–4869. [Google Scholar] [CrossRef]
- Bianchi, D.; Chafik, T.; Khalfallah, M.; Teichner, S.J. Intermediate species on zirconia supported methanol aerogel catalysts. Appl. Catal. A Gen. 1995, 123, 89–110. [Google Scholar] [CrossRef]
- Benestil, M.; Moravek, V.; Lamotte, J.; Saur, O.; Lavalley, J.C. Infrared study of alcohols adsorption on zirconium oxide: Reactivity of alkoxy species towards CO2. Spectrochim. Acta A 1987, 43, 1487–1491. [Google Scholar] [CrossRef]
Entry | Catalyst | Zr a (mmol) | Reaction Time (h) | Catalyst Weight (g) | DMC Yield (%) | TON b | Ref. |
---|---|---|---|---|---|---|---|
1 | None | - | 1 | 0 | 0 | 0 | This work |
2 | SBA-15 | - | 1 | 0.5 | 0 | 0 | This work |
3 | Zr/SBA-15-L | 0.089 | 1 | 0.5 | 0.012 | 0.134 | This work |
4 | Zr/SBA-15 | 0.167 | 1 | 0.5 | 0.029 | 0.173 | This work |
5 | Zr/SBA-15-H | 0.242 | 1 | 0.5 | 0.061 | 0.252 | This work |
6 | Zr/SBA-15-S | 0.321 | 1 | 0.5 | 0.087 | 0.271 | This work |
7 | Zr/SBA-15 | 0.167 | 4 | 0.5 | 0.220 | 1.317 | This work |
8 | Zr-SBA-15-L | 0.089 | 1 | 0.5 | 0 | 0 | This work |
9 | Zr-SBA-15 | 0.167 | 1 | 0.5 | 0 | 0 | This work |
10 | Zr-SBA-15-H | 0.242 | 1 | 0.5 | 0.001 | 0.004 | This work |
11 | Zr-SBA-15-S | 0.321 | 1 | 0.5 | 0.003 | 0.009 | This work |
12 | Zr-SBA-15 | 0.167 | 10 | 0.5 | 0 | 0 | This work |
13 | Zr-SBA-15 | 0.334 | 10 | 1.0 | 0 | 0 | This work |
14 | CeO2 | 0.058 | 1 | 0.01 | 0.024 | 0.413 | [11] |
15 | Ce/SBA-15-6 | - | 2 | 0.5 | 0.075 | - | [44] |
16 | ZrO2 | 4.057 | 1 | 0.5 | 0.015 | 0.003 | [45] |
Sample | Vp (cm3g−1) a | SBET (m2g−1) b | Dp (nm) c |
---|---|---|---|
SBA-15 | 1.32 | 858 | 6.8 |
Zr-SBA-15 | 1.12 | 836 | 5.7 |
Zr/SBA-15 | 1.02 | 796 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, L.; Wang, T.; Xuan, K.; Li, L.; Pu, Y.; Li, C.; Qiao, C.; Yang, H.; Bai, Y. Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments. Catalysts 2021, 11, 710. https://doi.org/10.3390/catal11060710
Huo L, Wang T, Xuan K, Li L, Pu Y, Li C, Qiao C, Yang H, Bai Y. Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments. Catalysts. 2021; 11(6):710. https://doi.org/10.3390/catal11060710
Chicago/Turabian StyleHuo, Linmeng, Tian Wang, Keng Xuan, Lei Li, Yanfeng Pu, Chenxin Li, Congzhen Qiao, Hao Yang, and Yan Bai. 2021. "Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments" Catalysts 11, no. 6: 710. https://doi.org/10.3390/catal11060710
APA StyleHuo, L., Wang, T., Xuan, K., Li, L., Pu, Y., Li, C., Qiao, C., Yang, H., & Bai, Y. (2021). Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments. Catalysts, 11(6), 710. https://doi.org/10.3390/catal11060710