Stable Surface Technology for HER Electrodes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Commercialized Silver Nanoparticle-Coated Invasive Electrodes from Inanos (Inano-Ag-IE)
3.2. Preparation of Silver Nanoparticle-Coated Conventional Electrodes (Ag-CE)
3.3. Characterization of Electrode Samples
3.4. Electrochemical Measurements for Hydrogen Evolution Reaction (HER)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rad, M.A.V.; Ghasempour, R.; Rahdan, P.; Mousavi, S.; Arastounia, M. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. Energy 2021, 190, 116421. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, S. Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Hiragon, C.B.; Lee, J.H.; Kim, H.P.; Jung, J.-W.; Cho, C.-H.; In, S.-I. A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: An in-depth study on the interfacial charge transfer mechanism. Chem. Eng. J. 2021, 416, 127978. [Google Scholar] [CrossRef]
- Forinash III, K.; Perkins, J.H.; Whitten, B. Background, approaches, and resources for teaching energy in environmental studies. J. Environ. Stud. Sci. 2021. [Google Scholar] [CrossRef]
- Wu, H.-L.; Tung, C.-H.; Wu, L.-Z. Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction. Adv. Mater. 2019, 31, 1900709. [Google Scholar] [CrossRef]
- CarbonBrief. Mapped: Climate Change Laws around the World. 11 May 2017. Available online: https://www.carbonbrief.org/mapped-climate-change-laws-around-world (accessed on 10 March 2021).
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Rao, J.; Wu, J.; Kumar, A.; Xu, Q.N.; Fu, C.; Liu, E.; Blake, G.R.; Werner, P.; et al. Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media. Adv. Energy Mater. 2018, 8, 1801258. [Google Scholar] [CrossRef]
- Kamat, P.V.; Bisquert, J. Solar Fuels. Photocatalytic Hydrogen Generation. J. Phys. Chem. C 2013, 117, 14873–14875. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Energy. A National Vision of America’s Transition to a Hydrogen Economy-To 2030 and Beyond; United States Department of Energy: Washington, DC, USA, 2003.
- Van Troostwijk, A.P.; Deiman, J.R. Sur une manière de décomposer l’Eau en Air inflammable et en Air vital. Obs. Phys. 1789, 35, 369. [Google Scholar]
- Jiao, M.; Chen, Z.; Zhang, X.; Mou, X.; Liu, L. Multicomponent N doped graphene coating Co@Zn heterostructures electrocatalysts as high efficiency HER electrocatalyst in alkaline electrolyte. Int. J. Hydrog. Energy 2020, 45, 16326–16336. [Google Scholar] [CrossRef]
- Joyner, J.; Oliveira, E.F.; Yamaguchi, H.; Kato, K.; Vinod, S.; Galvao, S.D.; Salpekar, D.; Roy, S.; Martinez, U.; Tiwary, C.S.; et al. Graphene Supported MoS2 Structures with High Defect Density for an Efficient HER Electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 12629–12638. [Google Scholar] [CrossRef]
- Kumar, G.M.; Ilanchezhiyan, P.; Siva, C.; Madhankumar, A.; Kang, T.W.; Kim, D.Y. Co-Ni based hybrid transition metal oxide nanostructures for cost-effective bi-functional electrocatalytic oxygen and hydrogen evolution reactions. Int. J. Hydrog. Energy 2020, 45, 391–400. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, L.; Bukhvalov, D.; Chen, Z.; Zou, Z.; Shang, L.; Yang, X.; Yan, D.; Han, F.; Zhang, T. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 2020, 70, 104445. [Google Scholar] [CrossRef]
- Kim, M.; Ha, J.; Shin, N.; Kim, Y.-T.; Choi, J. Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction. Electrochim. Acta 2020, 364, 137315. [Google Scholar] [CrossRef]
- Olivares-Ramírez, J.M.; Campos-Cornelio, M.L.; Uribe Godínez, J.; Borja-Arco, E.; Castellanos, R.H. Studies on the hydrogen evolutio reaction on different stainless steels. Int. J. Hydrog. Energy 2007, 32, 3170–3173. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; He, T.; Shi, H.; Ma, X.; Zhang, C.; Yu, H.; Bai, Y.; Chen, J.; Luo, P. In-situ transformational mycelium-like metal phosphides-encapsulated carbon nanotubes coating on the stainless steel mesh as robust self-supporting electrocatalyst for water splitting. Appl. Surf. Sci. 2021, 549, 149227. [Google Scholar] [CrossRef]
- Tang, L.; Du, D.; Yang, F.; Liang, Z.; Ning, Y.; Wang, H.; Zhang, G.-J. Preparation of graphene-modified acupuncture needle and its application in detecting neurotransmitters. Sci. Rep. 2015, 5, 11627. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Tang, L.-N.; Ning, Y.; Shu, Q.; Liang, F.-X.; Wang, H.; Zhang, G.-J. In vivo monitoring of serotonin by nanomaterial functionalized acupuncture needle. Sci. Rep. 2016, 6, 28018. [Google Scholar] [CrossRef]
- Niu, X.; Wen, Z.; Li, X.; Zhao, W.; Li, X.; Huang, Y.; Li, Q.; Li, G.; Sun, W. Fabrication of graphene and gold nanoparticle modified acupuncture needle electrode and its application in rutin analysis. Sens. Actuators B Chem. 2018, 255, 471–477. [Google Scholar] [CrossRef]
- Amin, M.A.; Fadlallah, S.A.; Alsoaimi, G.S. In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrog. Energy 2014, 39, 19519–19540. [Google Scholar] [CrossRef]
- Campbell, F.W.; Belding, S.R.; Baron, R.; Xiao, L.; Compton, R.G. The Hydrogen Evolution Reaction at a Silver Nanoparticle Array and a Silver Macroelectrode Compared: Changed Electrode Kinetics between the Macro- and Nanoscales. J. Phys. Chem. C 2009, 113, 14852–14857. [Google Scholar] [CrossRef]
- Balan, L.; Malval, J.-P.; Schneider, R.; Burget, D. Silver nanoparticles: New synthesis, characterization and photophysical properties. Mater. Chem. Phys. 2007, 104, 417–421. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Castañon, G.-A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Kim, H.S.; Choi, H.; Flores, M.C.; Razzaq, A.; Gwak, Y.S.; Ahn, D.; Kim, M.S.; Gurel, O.; Lee, B.H.; In, S.-I. Noble Metal Sensitized Invasive Porous Bioelectrodes: Advanced Medical Device for Enhanced Neuronal Activity and Chronic Alcohol Treatment. RSC Adv. 2020, 10, 43514–43522. [Google Scholar] [CrossRef]
- Yang, W.-D. Nano Silver Coating on Acupuncture Needle. KR 20-0402785, 2005. [Google Scholar]
- Youn, J.-S.; Jeong, S.; Oh, I.; Park, S.; Mai, H.D.; Jeon, K.-J. Enhanced Electrocatalytic Activity of Stainless Steel Substrate by Nickel Sulfides for Efficient Hydrogen Evolution. Catalysts 2020, 10, 1274. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, T.; Li, Y.; Huang, Y.; Li, Y.; Balogun, M.-S.J.T. A Simple and Scalable Approach to Remarkably Boost the Overall Water Splitting Activity of Stainless Steel Electrocatalysts. ACS Omega 2019, 4, 16130–16138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Feng, J.-Y.; Dong, C.-K.; Liu, H.; Du, X.-W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114. [Google Scholar] [CrossRef]
- Mo, J.; Setfanov, B.I.; Lau, T.H.M.; Chen, T.; Wu, S.; Wang, Z.; Gong, X.-Q.; Wilkinson, I.; Schimid, G.; Tsang, S.C.E. Superior Performance of Ag over Pt for Hydrogen Evolution Reaction in Water Electrolysis under High Overpotentials. ACS Appl. Energy Mater. 2019, 2, 1221–1228. [Google Scholar] [CrossRef]
Element (at.%) | CE | Inano-Ag-IE | Ag-CE | |||
---|---|---|---|---|---|---|
Electrode Body | Electrode Handle | Electrode Body | Electrode Handle | Electrode Body | Electrode Handle | |
Iron | 58.31 | 64.21 | 50.31 | 2.37 | 56.01 | 59.40 |
Carbon | 15.08 | 17.53 | 21.32 | 8.15 | 19.73 | 14.13 |
Chromium | 18.93 | 15.65 | 14.05 | 0.23 | 14.36 | 15.43 |
Nickel | 5.19 | 1.63 | 5.90 | 0.88 | 7.59 | 7.59 |
Oxygen | 1.46 | 0.21 | 6.12 | 0.62 | 1.76 | 3.45 |
Silicon | 1.03 | 0.77 | 2.30 | 0.18 | 0.00 | 0.00 |
Silver | 0.00 | 0.00 | 0.00 | 87.57 | 0.55 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Kim, H.; Flores, M.C.; Jung, G.-S.; In, S.-I. Stable Surface Technology for HER Electrodes. Catalysts 2021, 11, 693. https://doi.org/10.3390/catal11060693
Kim HS, Kim H, Flores MC, Jung G-S, In S-I. Stable Surface Technology for HER Electrodes. Catalysts. 2021; 11(6):693. https://doi.org/10.3390/catal11060693
Chicago/Turabian StyleKim, Hong Soo, Hwapyong Kim, Monica Claire Flores, Gyu-Seok Jung, and Su-Il In. 2021. "Stable Surface Technology for HER Electrodes" Catalysts 11, no. 6: 693. https://doi.org/10.3390/catal11060693
APA StyleKim, H. S., Kim, H., Flores, M. C., Jung, G.-S., & In, S.-I. (2021). Stable Surface Technology for HER Electrodes. Catalysts, 11(6), 693. https://doi.org/10.3390/catal11060693